
CS3323 Winter 2007 Assignment 5 (40 marks)
Due Wednesday, April 4, by 5pm.

• Assignments should be handed in by placing them in the CS3323 bin on E level of Gillin

Hall.

1. (5 marks) Starting with an empty (2,4) tree, what is the minimum number of keys

one would have to insert so that inserting the last key causes multiple splits? Give an

example of such a sequence of keys; draw the tree both before the insertion of the final

key and after that insertion. (Your example shouldn’t have more than 15 keys.)

Solution: In order to get two splits, a new key must be inserted into a 4-node whose

parent is also a 4-node. Also, after a 4-node is split, the left child is the larger of the

new children (since the left child is a 3-node and the right child is a 2-node). This

means that the fastest way to force multiple splits is to continually insert smaller and

smaller elements.

As a result, the minimum number of keys you’d have to insert is 10.

Examples could be various.

2. (10 marks) Consider a (2,4) tree T storing 100,000 items. What are the best-case

and the worst-case heights of T? Justify.

Solution:

Best-case: It is known from proposition 8.5 that the height cannot be less then

1/2 log 100, 001 = 8.3048275 . . .. So the question is: can it be 9? And the answer is:

yes. Basically the idea is to place as many 4-nodes as possible at each level starting

from the lowest level, and then carefully rediscribute the overflow. The following is a

possible node distribution per level that a 2-4 tree can have to have height 9:

Level Nodes 4-Nodes 3-Nodes 2-Nodes \\

0 1 0 0 1 \\

1 2 1 1 0 \\

2 7 5 1 1 \\

3 25 24 0 1 \\

4 98 97 1 0 \\

5 391 390 1 0 \\

6 1,563 1,562 1 0 \\

7 6,251 6,249 1 1 \\

8 25,001 24,999 1 1 \\

9 100,001

1



Worst-case: We know from proposition 8.5 that the height cannot be more then

log 100, 001 = 16.609655 . . .. The question is, can we do as well as 16, and the answer

is, yes. Imagine that we put 100,001 nodes in the bottom level of the tree, and then

try to go upwards from there in the most inefficient way possible. Which is to say, we

try to use as many 2-nodes as possible. At each level of the tree, we can make pairs of

nodes be children of a 2-node a level higher, and if there is an odd number of nodes in

the level, we make the last node a child of one of the 2-nodes above (thus turning it

into a 3-node).

So we start at level h with 100, 001 nodes. If a level has n nodes, then the level above

it is going to have n/2 nodes if n it is even, and (n− 3)/2 + 1 = (n− 1)/2 nodes if it

is odd. Let me be extra meticulous for a second, and show exactly how many nodes of

each kind we should have at each level to achieve 16 levels:

Level Nodes 2-Nodes 3-Nodes

0 1 1 0

1 2 1 1 \\

2 5 4 1 \\

3 11 10 1 \\

4 23 23 0 \\

5 46 46 0 \\

6 92 91 1 \\

7 185 185 0 \\

8 390 389 1 \\

9 781 781 0 \\

10 1,562 1,561 1 \\

11 3,125 3,125 0 \\

12 6,250 6,250 0 \\

13 12,500 12,500 0 \\

14 25,000 25,000 0 \\

15 50,000 49,999 1 \\

16 100,001

3. (10 marks) For each of the following two cases, insert the keys in the sequence given

into an initially empty (2, 4) tree. Assume that the keys are in an alphabetic order

(a < b < c < ... < y < z).

• a,b,c,d,e,f,g,h,i,j,k,l

2



• a,v,l,t,r,e,i,s,f,u,n

Solution:

4. (5 marks) Draw the 11-item hash table that results from using the hash function

h(i) = (2i + 5) mod 11 to hash the keys 12, 44, 13, 88, 23, 94, 11, 39, 20, 16, and 5,

assuming collisions are handled by double hashing. Use h′(i) = 7 − (i mod 7) for the

secondary hash function. In both hash functions, the argument i is the value of the

key being hashed.

Solution:

First, figure out h(i) and h′(i) for each key:

key h(i) h′(i)
12 7 2

44 5 5

13 9 1

88 5 3

23 7 5

94 6 4

11 5 3

39 6 3

20 1 1

16 4 5

5 4 2

Now, the hash table:

3



slot key

0 11

1 23

2 20

3 16

4 39

5 44

6 94

7 12

8 88

9 13

10 5

5. (10 marks) Show that, for general hash functions h(i) and h′(i), if N is not a prime

number, double hashing may not find an empty bucket even if one exists. Hint: Con-

sider what conditions must be true in order for a bucket to be tested twice.

Solution: The buckets tested under double hashing are h(i) mod N , h(i) + h′(i) mod

N , h(i)+2h′(i) mod N , . . . Let 0 < j ≤ N be the smallest integer such that jh′(i) mod

N = 0 (i.e., jh′(i) is a multiple of N). Also let bk be the bucket visited at the kth step.

Then two important properties are true:

bk = bk+j = bk+2j = . . .

and

bk 6= bl for all k < l < j

In other words, each bucket is repeated after exactly j steps and not before.

To show that buckets are skipped, all that is needed is to show that if N is not prime,

there is at least one value of h′(i) for which j < N because then for the key i, it is

not possible for all the buckets to be visited before the first bucket is repeated. If N

is not prime then it has at least one factor n other than 1 and N — when h′(i) = n,

then j = N/n is an integer less than N and jh′(i) = N is a multiple of N . (As a side

note, if N is prime, then we need to observe that if jh′(i) is a multiple of N , there is

an integer 0 < k < N such that jh′(i) = kN . Since h′(i) < N , this works out only if

h′(i) = k and j = N . Since no bucket is repeated until after N tests are made, they

must all be visited.)

4


