
Sample Solution for CS3323 Winter 2007 Assignment 2 (55
marks)

Due Wednesday, Feb. 14, by 5pm.

• Assignments should be handed in by placing them in the CS3323 bin on E level of

Gillin Hall.

• A hardcopy of your program code must be submitted with your written assignment,

code must also be submitted electronically by email to hzhang@unb.ca as an attach-

ment. The name of your attachment must consist of your last name, student id,

assignment number, question number. For example, your last name is Smith, student

id is: 330321, it is the code for Question 6 in Assignment 2, then the name of your

attachment should be ”Smith-330321-2-6.java”.

1. (5 marks) Describe the elements in the stack and the output of after each stack op-

eration in the following series, initially empty stack:

push(8), push(6), pop(), push(4), push(12), pop(), pop(), push(13), push(4), pop(),

push(14), push(10), pop(), pop(), push(2), pop(), pop().

solution: (bottom of the stack is to the left)

8

8 6

8

8 4

8 4 12

8 4

8

8 13

8 13 4

8 13

8 13 14

8 13 14 10

8 13 14

8 13

8 13 2

1



8 13

8

2. (5 marks) Describe the elements in the queue and the output after each of the fol-

lowing series of queue operations, initially empty queue:

enqueue(10), enqueue(8), dequeue(), enqueue(12), enqueue(18), dequeue(), dequeue(),

enqueue(19), enqueue(11), dequeue(), enqueue(17), enqueue(16), dequeue(), dequeue(),

enqueue(14), dequeue(), dequeue().

solution: The head of the queue is on the left.

10

10 8

8

8 12

8 12 18

12 18

18

18 19 18 19 11

19 11

19 11 17

19 11 17 16

11 17 16

17 16

17 16 14

16 14

14

3. (10 marks) Write pseudo code that describes how to use a stack to solve the following

problem:

Given an English word and an integer representing the length of the word, return

’true’ if the word is a palindrome (that reads the same backward or forward ) and

’false’ otherwise.

For example, your algorithm should return ’true’ for the inputs (noon, 4), and (rotator,

7), but ’false’ for the input (data, 4) and (structure, 9).

Solution: Create a stack, and push half the letters of the word into then stack, then

2



compare the top of the stack with the next letter of the word, if they are not equal,

output ’false’, else do ’pop’ and check the next letter. After all the letters have been

checked, output ’true’ if the stack is empty, otherwise output ’false’.

4. (10 marks) Suppose we have a stack S containing n elements and a queue Q that

is initially empty. Describe how you can use Q to scan S to see if it contains a

certain element x, with the additional constraint that your algorithm must return the

elements back to S in their original order. Describe the pseudo-code of your algorithm

and analyze its asymptotical time complexity.

Solution: The solution is to actually use the queue Q to process the elements in two

phases. In the first phase, we iteratively pop each the element from S and enqueue it

in Q, and then we iteratively dequeue each element from Q and push it into S. This

reverses the elements in S. Then we repeat this same process, but this time we also

look for the element x. By passing the elements through Q and back to S a second

time, we reverse the reversal, thereby putting the elements back into S in their original

order.

The time complexity is O(n).

5. (10 marks) Describe how to implement the stack ADT using two queues. What is

the running time of the push() and pop() methods in this case?

Hint: Consider how to use the methods defined in the queue ADT to implement the

push() and pop() methods in the stack ADT.

Solution: To implement the Stack ADT using two queues, Q1 and Q2, we can simply

enqueue elements into Q1 whenever a push call is made. This takes O(1) time to

complete. For pop calls, we can dequeue all elements of Q1 and enqueue them into Q2

except for the last element which we set aside in a temp variable. We then return the

elements to Q1 by dequeuing from Q2 and enqueuing into Q1. The last element that

we set aside earlier is then returned as the result of the pop. Thus, performing a pop

takes O(n) time.

6. (15 marks) Describe how to implement two stacks using one array. The total number

of elements in both stacks is limited by the array length; all stack operations should

run in O(1) time. Write a Java program to implement your algorithm. Your pro-

gram should be able to perform all the operations defined in stack ADT and process

exceptions.

solution: (10 marks) Let us make the stacks (S1 and S2) grow from the beginning

and the end of the array (A) in opposite directions.

3



Let the indices T1 and T2 represent the tops of S1 and S2 correspondingly. S1 occupies

places A[0 . . . T1], while S2 occupies places A[T2 . . . (n − 1)]. The size of S1 is T1 + 1;

the size of S2 is n − T2 + 1. Stack S1 grows right while stack S2 grows left. Then we

can perform all the stack operations in constant time similarly to how it is done in the

basic array implementation of stack except for some modifications to account for the

fact that the second stack is growing in a different direction. Also to check whether

any one of the stacks is full, we check if S1.size() + S2.size()≥ n. In other words, the

stacks do not overlap if their total length does not exceed n.

(5 marks) Test the program by performing several S1.push(x), S1.pop(), S2.push(x),

S2.pop().

4


