
Sample Solution for CS3323 Fall 2006 Assignment 1 (41 marks)
Due Friday Sept 29, by 5pm.

1. What does the following algorithm do? Analyze its worst-case running time, figure out

its running time function, and express it using “Big-Oh” notation.

Algorithm Foo (a, n):

Input: two integers, a and n

Output: ?

k ← 0

b ← 1

while k < n do

k ← k + 1

b ← b ∗ a

return b

Solution: (5 marks) This algorithm computes an. The running time of this algo-

rithm is O(n) because

• the initial assignments take constant time

• each iteration of the while loop takes constant time

• there are exactly n iterations

2. What does the following algorithm do? Analyze its worst-case running time, figure out

its running time function, and express it using “Big-Oh” notation.

Algorithm Bar (a, n):

Input: two integers, a and n

Output: ?

k ← n

b ← 1

c ← a

while k > 0 do

if k mod 2 = 0 then

k ← k/2

c ← c ∗ c

else

k ← k − 1

b ← b ∗ c

return b

1



Solution: (8 marks) This algorithm also computes an. Its running time is O(log n)

for the following reasons:

The initialization and the if statement and its contents take constant time, so we need

to figure out how many times the while loop gets called. Since k goes down (either

gets halved or decremented by one) at each step, and it is equal to n initially, at worst

the loop gets executed n times. But we can (and should) do better in our analysis.

Note that if k is even, it gets halved, and if it is odd, it gets decremented, and halved

in the next iteration. So at least every second iteration of the while loop halves k.

One can halve a number n at most dlog ne times before it becomes ≤ 1 (each time

we halve a number we shift it right by one bit, and a number has dlog ne bits). If we

decrement the number in between halving it, we still get to halve no more then dlog ne
times. Since we can only decrement k in between two halving iterations (unless n is

odd or it is the last iteration), we get to do a decrementing iteration at most dlog ne+2

times. So we can have at most 2dlog ne+ 2 iterations. This is obviously O(log n).

3. Algorithm A executes 10n log n operations, while algorithm B executes n2 operations.

Determine the minimum integer value n0 such that A executes fewer operations than

B for n ≥ n0.

Solution: (5 marks) Assume that the base of the log is 2. We must find the minimum

integer n0 such that 10n log n < n2. Since n describes the size of the input data set

that the algorithms operate upon, it will always be positive. Since n is positive, we

may factor an n out of both sides of the inequality, giving us 10logn < n. Let us

consider the left and right hand side of this inequality. These two functions have one

intersection point for n > 1, and it is located between n = 58 and n = 59. Indeed,

10 log 58 ≈ 58.57981 > 58 and 10 log 59 = 58.82643 < 59. So for 1 ≤ n ≤ 58,

10n log n ≥ n2, and for n ≥ 59, 10n log n < n2. So n0 we are looking for is 59.

4. Prove or disprove each of the following statements:

(a) 10n2 + 8n + 2 is O(n2).

Proof: (3 marks)

10n2 + 8n + 2 ≤ 10n2 + 8n2 + 2n2

= 20n2

(1)

Let C = 20 and n0 = 1. We have 10n2 + 8n + 2 ≤ Cn2 for all n ≥ n0.

2



(b) 3(n + 1)7 + 2n log n is O(n7).

Proof: (3 marks)

3(n + 1)7 + 2n log n ≤ 3(n + n)7 + 2n log n

= (3× 27)n7 + 2n log n

≤ (3× 27)n7 + 2n7

= (3× 27 + 2)n7

(2)

Let C = 3×27 +2 and n0 = 1. We have 3(n+1)7 +2n log n ≤ Cn7 for all n ≥ n0.

(c) 3n5 + 10n4 log2 n− 10n3 − 15n2 is O(n5)

Proof: (3 marks)

3n5 + 10n4 log2 n− 10n3 − 15n2 ≤ 3n5 + 10n4 log2 n

= 3n5 + 10n5

= 13n5

(3)

Let C = 13 and n0 = 1. We have 3n5 + 10n4 log2 n − 10n3 − 15n2 ≤ Cn5 for all

n ≥ n0.

(d) 10n4 is O(10000n3 log2 n)

Disproof: (4 marks) To make this true, we should have constants C and n0,

such that for all n ≥ n0,

10n4 ≤ C10000n3 log2 n

10n ≤ C10000 log2 n
n

1000 log2 n
≤ C

(4)

Since the growth rate of n is greater than log2 n and C is a constant, n
1000 log2 n

≥ C

when n is large. Therefore, it is not possible to find an n0 to make n
1000 log2 n

≤ C

for all n ≥ n0 given any constant C.

5. Order the following functions by the big-O notation, starting from the smallest one.

3log9 n log8 n3 log10 log10 n100
√

n n0.001 log2 n (log2 n)2

3



Solution: (5 marks)

The increasing order in growth rate is:

log10 log10 n100 (log8 n3, log2 n) (log2 n)2 n0.001 (3log9 n,
√

n)

6. Prove that if f(n) is O(g(n)) and d(n) is O(h(n)), then f(n) + d(n) is O(g(n) + h(n)).

Proof: (5 marks) Recall the definition of big-Oh notation: we need constants c > 0

and n0 ≥ 1 such that f(n) + d(n) ≤ c(g(n) + h(n)) for every integer n ≥ n0.

f(n) is O(g(n)) means that there exists cf > 0 and an integer n0f ≥ 1 such that

f(n) ≤ cfg(n) for every n ≥ n0f . Similarly, d(n) is O(h(n)) means that there exists

cd > 0 and an integer n0d ≥ 1 such that d(n) ≤ cdh(n) for every n ≥ n0d.

Let n0 = max(n0f , n0d), and c = max(cf , cd). So f(n) + d(n) ≤ cfg(n) + cdh(n) ≤
c(g(n) + h(n)) for n ≥ n0. Therefore f(n) + d(n) is O(g(n) + h(n)).

4


