
Sample Solution for CS3323 Fall 2006 Assignment 3 (40 marks)
Due Monday, Oct. 30, by 5pm.

• Assignments should be handed in by placing them in the CS3323 bin on E level of

Gillin Hall.

1. (10 marks) Given a new element e1 and an element e2 stored in a singly linked list,

design an algorithm to insert e1 before e2 (if e2 is not in the list, insert e1 at the tail).

Give the pseudo code of your algorithm and analyze its time complexity.

Solution:

Algorithm InsertBefore (S, e1, e2 ):

Input: A singly linked list S, two elements e1 and e2

Output: S with e1 before e2

v ← new Node()

v.setElement(e1)

previous ← null

current ← S.head

while (current != null) and (current.getElement()!= e2)

previous ← current

current ← current.getNext()

if (current.getElement() = e2 )

if (previous = null)

S.head ← v

v.next ← current

else

previous.next ← v

v.next ← current

else

if (current = null)

S.head ← v

v.next ← null

else

v.next ← null

previous.next ← v

1



S.size ← S.size +1

2. (5 marks) What is the output from the following sequence of priority queue ADT

methods: insert(5,A), insert(4,B), insert(7,I),insert(1,D), removeMin(), insert(3,J), in-

sert(6,L), removeMin(), removeMin(), insert(8,G), removeMin(), insert(2,H), removeMin(),

removeMin().

Solution: (1, D), (3, J), (4, B), (5, A), (2, H), (6, L).

3. (a) (5 marks) Illustrate the execution of the selection-sort algorithm implemented by

a Priority Queue on the following input sequence: (22, 15, 36, 44, 10, 3, 9, 13, 29, 25).

(b) (5 marks) Illustrate the execution of the insertion-sort algorithm implemented by

a Priority Queue on the input sequence given in part

Solution:

(a)

Sequence S Priority Queue P

Input (22, 15, 36, 44, 10, 3, 9, 13, 29, 25) ()

1.a (15, 36, 44, 10, 3, 9, 13, 29, 25) (22)

1.b (36, 44, 10, 3, 9, 13, 29, 25) (22, 15)

1.c (44, 10, 3, 9, 13, 29, 25) (22, 15, 36)

1.d (10, 3, 9, 13, 29, 25) (22, 15, 36, 44)

1.e (3, 9, 13, 29, 25) (22, 15, 36, 44, 10)

1.f (9, 13, 29, 25) (22, 15, 36, 44, 10, 3)

1.g (13, 29, 25) (22, 15, 36, 44, 10, 3, 9)

1.h (29, 25) (22, 15, 36, 44, 10, 3, 9, 13)

1.i (25) (22, 15, 36, 44, 10, 3, 9, 13, 29)

1.j () (22, 15, 36, 44, 10, 3, 9, 13, 29, 25)

2.a (3) (22, 15, 36, 44, 10, 9, 13, 29, 25)

2.b (3, 9) (22, 15, 36, 44, 10, 13, 29, 25)

2.c (3, 9, 10) (22, 15, 36, 44, 13, 29, 25)

2.d (3, 9, 10, 13) (22, 15, 36, 44, 29, 25)

2.e (3, 9, 10, 13, 15) (22, 36, 44, 29, 25)

2.f (3, 9, 10, 13, 15, 22) (36, 44, 29, 25)

2.g (3, 9, 10, 13, 15, 22, 25) (36, 44, 29)

2.h (3, 9, 10, 13, 15, 22, 25, 29) (36, 44)

2.i (3, 9, 10, 13, 15, 22, 25, 29, 36) (44)

2.j (3, 9, 10, 13, 15, 22, 25, 29, 36, 44) ()

2



(b)

Sequence S Priority Queue P

Input (22, 15, 36, 44, 10, 3, 9, 13, 29, 25) ()

1.a (15, 36, 44, 10, 3, 9, 13, 29, 25) (22)

1.b (36, 44, 10, 3, 9, 13, 29, 25) (15, 22)

1.c (44, 10, 3, 9, 13, 29, 25) (15, 22, 36)

1.d (10, 3, 9, 13, 29, 25) (15, 22, 36, 44)

1.e (3, 9, 13, 29, 25) (10, 15, 22, 36, 44)

1.f (9, 13, 29, 25) (3, 10, 15, 22, 36, 44)

1.g (13, 29, 25) (3, 9, 10, 15, 22, 36, 44)

1.h (29, 25) (3, 9, 10, 13, 15, 22, 36, 44)

1.i (25) (3, 9, 10, 13, 15, 22, 29, 36, 44)

1.j () (3, 9, 10, 13, 15, 22, 25, 29, 36, 44)

2.a (3) (9, 10, 13, 15, 22, 25, 29, 36, 44)

2.b (3, 9) (10, 13, 15, 22, 25, 29, 36, 44)

2.c (3, 9, 10) (13, 15, 22, 25, 29, 36, 44)

2.d (3, 9, 10, 13) (15, 22, 25, 29, 36, 44)

2.e (3, 9, 10, 13, 15) (22, 25, 29, 36, 44)

2.f (3, 9, 10, 13, 15, 22) (25, 29, 36, 44)

2.g (3, 9, 10, 13, 15, 22, 25) (29, 36, 44)

2.h (3, 9, 10, 13, 15, 22, 25, 29) (36, 44)

2.i (3, 9, 10, 13, 15, 22, 25, 29, 36) (44)

2.j (3, 9, 10, 13, 15, 22, 25, 29, 36, 44) ()

4. (5 marks) Draw a single binary tree T such that

• each internal node of T stores a single character

• a preorder traversal of T yields EXAMFUN; and

• a inorder traversal of T yields MAFXUEN

Solution:

5. (10 marks) Give an O(n)-time algorithm for computing the depth of each node of

a tree T , where n is the number of nodes of T . Assume the existence of methods

setDepth(v,d) and getDepth(v) that run in O(1) time.

Solution: Depth of a node v is equal to depth of the parent of v incremented by one.

Therefore, our algorithm will mimic preorder traversal algorithm (each parent has to

3



N

U

FM

A

X

E

Figure 1: The solution tree for Question 4.

be “processed” before its children). To compute depth of each node of T , the following

algorithm should be called with T and T.root().

Algorithm ComputeDepth (T , v):

Input: tree T ; v is a node of T

Output: depth of each node in the subtree of T rooted at v

if (T .isRoot(v)) then

setDepth(v, 0)

else

setDepth(v, 1 + getDepth(T .parent(v)))

children ← T .children(v)

while (children.hasNext()) do

child ← children.next()

ComputeDepth(T , child)

We assume that children(v) runs in O(cv) worst-case time where cv is the number of

children of v. Then every line of the if statement takes O(1). Assignment to children

takes O(cv) time, and the while loop gets executed cv times also, and recursively

computes depths of all the nodes in the subtree rooted at v. Excluding these recursive

calls, ComputeDepth takes O(cv) time.

4



How much time does ComputeDepth(T , T .root()) take? Note that for each node v of

T , we get to call ComputeDepth(T ,v) exactly once (since each node has at most one

parent and we start out with the root of T ). Therefore the time it takes to execute

ComputeDepth(T , T .root()) is equal to the combined time it takes to execute non

recursive part of ComputeDepth on each node of v. This is equal to
∑

v∈T
O(cv) =

O(
∑

v∈T
cv). So, this is O(n).

An alternative solution for this problem involves an auxiliary data structure that can

perform O(1) time insertions and deletions (for example, stacks and queues would

qualify). The following is the algorithm that uses a stack to compute depth. To make

the following algorithm use a queue, we have to start out with an initially empty

queue and replace all push and pop methods with enqueue and dequeue methods

correspondingly.

Algorithm ComputeDepth(T )

Input: tree T

Output: depth of each node in the subtree of T

current ← T .root()

S ← an empty Stack

S.push(current)

while (! S.isEmpty()) do

current ← S.pop()

if (T .isRoot(current)) then

setDepth(current, 0)

else

setDepth(v, 1 + getDepth(T .parent(v)))

children ← T .children(v)

while (children.hasNext()) do

S.push(children.next())

The reason we can use both a queue and a stack here is because it is irrelevant in which

order we process the children of each node, as long as we process the node itself before

any of its children. We ensure this by exracting a node from and then inserting its

children into whatever auxiliary data structure we are using.

Note that each node gets inserted and removed exactly once. The number of insertions

bounds from above the number of times the outer while loop gets executed and the

number of removals bounds the number of times the number of iterations of the inner

while loop. Everything else is simple operations and O(1) methods, so this algorithm

is also O(n).

5


