
Sample Solution for CS3323 Fall 2006 Assignment 5 (58 marks)
Due Monday, Nov. 27, by 5pm.

• Assignments should be handed in by placing them in the CS3323 bin on E level of

Gillin Hall.

62

44 78

17 50

48 54

88

Figure 1: AVL tree for Question 1.

1.

(a) (5 marks) Draw the AVL tree resulting from the insertion of an item with a key

52 into the AVL tree of Figure 1 (show the tree after each rotation, if any).

(b) (5 marks) Draw the AVL tree resulting from the removal of the item with key

62 from the AVL tree of Figure 1 (show the tree after each rotation, if any).

(c) (8 marks) Draw an example of an AVL tree such that a single remove operation

causes rotations to propagate all the way to the root. (Use triangles to represent

subtreees that are not affected by this operations.) The height of your example

tree should be at least 5. Show the tree after each rotation.

solution: In a generic sense, we are looking for a certain type of subtree (of

arbitrary height) for which removing an element causes the entire subtree to

decrease in height. Consider the tree rooted at z:

1



If T were to decrease in height by one (to k), that would cause this whole (sub)tree

to become unbalanced, causing a rotation and resulting in the following post-

rotation tree:

Note that before the rotation, the tree was of height k + 3, but now it is k + 2:

it has shrunk by one level. Now, in a bit of handwaving, we blithely said that

T would decrease in height by one; with that we constructed a larger tree which

would also decrease in height by one (after a rotation). The base case of this little

induction is where k = 0 and T is just a single node which is deleted; from which

we can construct any number of larger trees by performing the construction with

T equal to a smaller tree with this property.

So here is a concrete example, which is (not coincidentally) also the most correct

homework answer: an AVL tree of height 5 which, upon the deletion of one node,

causes two rotations. (The externals are omitted because that would just get so

messy.)

The leftmost unmarked node is by itself the subtree T in the first iteration of the

construction (T1); the other subtrees U, V, W are null here. This is a textbook

example of an AVL rotation, and clearly when this node is removed, the height of

the tree rooted at z1 will shrink by one. So if we consider the subtree rooted at

z1 to be itself the subtree T2, for the second iteration, we can construct around it

a larger tree which would have to undergo further rotation.

Note that I called that the “most correct” answer to the problem; this is because,

if I wanted to, I could plug this tree into yet another iteration of the algorithm, and

come out with a height-7 tree which would require three rotations. Ad infinitum.

A slightly less correct solution would be if y2’s left subtree (a.k.a. U2) were one

level higher; then the tree would require two rotations, but wouldn’t really be a

general example. (No points were deducted for this, however.)

There are, of course, a few valid variations; for example, z, y, and x can be related

in any of the four ways leading up to a rotation (either single or double). Instead

of the anonymous 3-node subtrees we used for U2, V2, and W2, we could have

used 2-node subtrees, and all the conditions would still hold. And, of course, we

could make our base case with k1 = 1 instead of k1 = 0, which wouldn’t have

affected the analysis, but would have made the diagrams a lot messier. (It also

would have made the tree of height 6.) Speaking of messy diagrams: the problem

did allow for answers which specified irrelevant subtrees with triangles; thus, we

could reasonably have substituted triangles of height 2 for the three anonymous

3-node subtrees, but the tree is small enough that it’s also not unreasonable to

just draw them out.

2



Analysis: this construction generates trees such that the number of required rota-

tions r = h−1

2
(assuming k1 = 0). The height h of an AVL tree is always Θ(log n).

Thus this tree (and all generated like it) will require Θ(log n) rotations.

2. In this problem, assume that letter A is equivalent to 0. The subscripts do not affect

the value of the keys (which are letters).

(a) (5 marks) Give the contents of the hash table that results when keys E1 A S1

Y Q U E2 S2 T I O N are inserted in that order into an initially empty 13-item

hash table using linear probing (use h(k) = k mod 13 for the hash function for

the k-th letter of the alphabeth).

Solution: In linear probing, we place an element into h(k)th slot or the first slot

available after it (if H[h(k)] is already full).

First, a small helper table for the English alphabeth:

Key 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 Letter A B C D E F G H I J K L M N O P Q R S T U V

W X Y Z mod 13 0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6

7 8 9 10 11 12

Probes listing:

E A S Y Q U E S T I O N 4 0 5 11 3 7 4 5 6 8 1

0

5 6 7 9 1

6 7 8 10 2

8 9

So the hashtable ends up being:

0 1 2 3 4 5 6 7 8 9 10 11 12

A O N Q E1 S1 E2 U S2 T I Y

(b) (5 marks) Give the contents of the hash table that results when keys E1 A S1

Y Q U E2 S2 T I O N are inserted in that order into an initially empty 13-item

hash table using double hasing (use h(k) = k mod 13 for the hash function for the

k-th letter of the alphabeth, and h′(k) = 1 + (k mod 11) for secondary hashing

function).

Solution: As per section 7.3.5 of the book, if h maps some key k to a bucket

A[i] with i = h(k), that is already occupied, then we iteratively try the buckets

A[(i + j · h′(k)) mod 13] next, for j = 1, 2, 3, . . ..

3



E A S Y Q U E S T I O N 4 0 5 11 3 7 4 5 6 8 1

0

0 0 4 5 3

9 8 0 9 6

9 0 9

5 4 12

1 8 2

12

0 1 2 3 4 5 6 7 8 9 10 11 12

A I N Q E1 S1 T U S2 E2 Y O

3. (a) (5 marks) What is the worst-case running time for inserting n items into an

initially empty hash table, where collisions are resolved by chaining? What if

each sequence is stored in sorted order? Assume that a hash table is an array of

link-based sequences.

Solution: The worst-case running time in the first case is O(n), since for every

item, we do two things, both of which take constant amount of work: compute

the hash function h of its key (O(1) time) and insert this item in front of the

h(k)th sequence (this take O(1) time in a link-based sequence).

If each sequence (chain) is stored in sorted order, then insertion in such a chain

could potentially take as much as O(sizeofsequence) time. The worst-case hap-

pens when we try to insert n keys into a hashtable in sorted order and all of

these keys are mapped to the same i by the hash function. In this case, we would

have to make n increasing-key insertions into a initially empty ordered link-based

sequence. I.e., for each key we have to scan down the sequence to find the item’s

proper place (last) which would take time O(j) for jth insertion. The total time

is then O(1 + 2 + . . . + n) = O(n2).

(b) (5 marks) How many probes are involved when double hashing is used to build a

table consisting of n equal keys? Consider each successful or unsuccessful attempt

to place an element in a hash to be a single probe.

Solution: Double hashing hashes key k according to the index H(k, j) = (h(k)+

j · h′(k)) mod N where j = 0, 1, 2, . . . and N is the size of the hash table. Since

we are concerned with lots of equal keys in this problem, let us see what kind of

js would it take to make H(k, j1) = H(k, j2) (let’s drop the first argument for

now, as all the keys in this problem are equal anyway).

(h(k) + j1 · h
′(k)) mod N = (h(k) + j2 · h

′(k)) mod N =⇒ (j1 − j2) · h
′(k) mod N = 0

4



This means that either h′(k) is divisible by N or (j1 − j2) is. The former is

impossible (or at least, it does not make any sense, because then H(k, j) =

h(k) mod N is independent of j and our probing mechanism is permanently stuck

trying to place an item in the same slot. So (j1 − j2) is our only other option, i.e.

double-hashing on the same key would require at least N probes before it hashes

a key into the same index as before.

Note that n is bound to be less then N , because otherwise the table is just too

small for the input set anyway. So if all n items have the same key, the ithe item

being inserted is guaranteed to have i−1 unsuccessful probes and then successful

ith probe (i.e. i probes altogether). So the total number of probes for all elements

is going to be 1 + 2 + . . . + n = n ∗ (n + 1)/2.

4. (a) (5 marks) Draw the merge tree for an execution of the merge-sort algorithm on

on the following input sequence: (2, 5, 16, 4, 10, 23, 39, 18, 26, 15).

(b) (5 marks) Draw the quick-sort tree for an execution of the quick-sort algorithm

on the input sequence from problem 1(a) (like in Figure 6.8).

Suppose we modify the deterministic version of the quick-sort algorithm so that,

instead of selecting the last element in an n-element sequence as the pivot, we

choose the element at rank bn/2c.

(c) (5 marks) Draw the quick-sort tree for an execution of this modified quick-sort

algorithm on the input sequence from problem 1(a).

(d) (5 marks) What is the running time of this version of quick-sort on a sequence

that is already sorted?

Solution: In a sorted sequence, this version of quicksort would always split the

sequence into two almost equal sorted pieces since the pivot is always smack in the

middle of it. Let T (n) be the worst-case running time of this quicksort algorithm

on a sequence of size n. Then

Tq(n) = Tq(b
n

2
c) + Tq(b

n

2
c) + cn = 2Tq(b

n

2
c) + cn

Note that this is almost exactly the same equation as we have for the stan-

dart analysis of merge-sort in section 6.1.3, except merge-sort has running time

Tm(n) = Tm(dn/2e) + Tm(bn/2c) + cn. Obviously Tq(n) = O(Tm(n)) given

the same constant c and the same running time given n ≤ 1. Since Tm(n) =

O(n logn), Tq(n) = O(O(n logn)) = O(n logn).

There are other ways to analyze this, like considering the height of the quicksort

tree. This tree is as tall as the number of times we can halve and then take floor

5



of n before hitting 1. This is trivially smaller then the number of times we can

halve n before hitting 1 (i.e. the smallest number k such that n/2k ≤ 1) which

is dlog ne. So now we have a tree of height O(log(n)) where at each level of the

tree we process each element of the sequence at most once. Therefore the running

time of modified quick-sort on a sorted sequence of size n is O(n log n).

6


