
Sample Solution for CS3323 Fall 2006 Assignment 4 (61 marks)
Due Monday, Nov. 13, by 5pm.

• Assignments should be handed in by placing them in the CS3323 bin on E level of

Gillin Hall.

1. Design algorithms for performing the following operations on a binary tree T of size n,

and analyze their worst-case running time. Your algorithms should avoid performing

traversals of the entire tree.

(a) (8 marks) preorderNext(v): return the node visited after node v in a preorder

traversal of T .

Solution: For the preorder traversal, nodes are visited before their left and right

subtrees, so the following cases apply:

i. if v is an internal node, the next node is its left child

ii. if v is an external node, locate the first ancestor (call it z) of v such that v

is in z’s left subtree; the next node is z’s right child if z exists, and null if

z does not exist (another valid thing would be to return the root of the tree

since it is the first vertex in the preorder traversal while v was the last).

Algorithm preorderNext(v):

Input: the current node v

Output: the next node in the preorder traversal of T

if T .isInternal(v) then { case 1 }

return T .leftChild(v)

else { case 2 }

if T .isRoot(v) then { z not found }

return null

else

current← v

z ← T.parent(current)

while current = T.rightChild(z) do

if T .isRoot(z) then { z not found }

return null

1



else

current← z

z ← T.parent(current)

return T .rightChild(z)

(b) (8 marks) inorderNext(v): return the node visited after node v in an inorder

traversal of T .

Solution: In the inorder traversal, nodes are visited between the nodes of their

left and right subtrees. The following cases apply:

i. if v is an internal node, the next node is the leftmost external node in v’s

right subtree

ii. if v is an external node, the next node is the first ancestor (call it z) of v such

that v is in z’s left subtree if z exists, and null (or the leftmost external node

of the tree) if z does not exist (ie, v is the last node on the tour; the leftmost

external node is the first).

Algorithm inorderNext(v):

Input: the current node v

Output: the next node in the inorder traversal of T

if T .isInternal(v) then { case 1 }

current← v

while (T .isInternal(current)) do

current← T .leftChild(current)

return current

else { case 2 }

if T .isRoot(v) then { z not found }

return null

else

current← v

z ← T.parent(current)

while current = T.rightChild(z) do

ifT .isRoot(z) then { z not found}

return null

else

current← z

z ← T.parent(current)

return z

2



Worst-case analysis for 2(b) and 2(c): the following picture has the examples for

which worst case running times are realized. For part (c) it is when the tree grows

left only. In this case, to find inorderNext(T .root()), the algorithm would have

to traverse from the root down the tree to its leftmost node for (n − 1)/2 hops

(iterations of the while loop), so this gives us O(n) running time. For part (b),

the worst case is when the tree grows right only. Then to find preorderNext(v)

where v is the rightmost node in the tree takes (n − 1)/2 hops up the tree (at

which point the algorithm realizes that v was the last vertex in the traversal), so

it is also O(n).

2. (10 marks) Let T be a binary tree with n nodes. It is realized with an implementation

of the Binary Tree ADT that has O(1) running time for all methods except positions()

and elements(), which have O(n) running time. Give an O(n) time algorithm that

uses the methods of the Binary Tree ADT to visit the nodes of T by level order

traversal . level order traversal visits the nodes in order of increasing depth,

visiting the nodes at a given depth from left-to-right. Assume the existence of an O(1)

time visit(v) method (it should get called once on each vertex of T during the execution

of your algorithm).

Solution:

The level-order traversal visits the nodes in order of increasing depth, visiting the nodes

at a given depth from left-to-right. The key is to note that if v1, v2, . . . , vm
are the

nodes of level k (from left-to-right), then leftChild(v1), rightChild(v1), leftChild(v2),

rightChild(v2), . . . , leftChild(v
m

), rightChild(v
m

) are the nodes of level k+1 (also from

left-to-right). As a result, the left-to-right list of vertices to be visited in level k + 1

can be built while visiting those in level k.

Algorithm levelOrderTraversal(T ):

Input: a binary tree T

Output: none

let Q be an empty queue

Q.enqueue(T .root())

while Q is not empty do

current← Q.dequeue()

visit(current)

if T .isInternal(current) then

Q.enqueue(T .leftChild(current))

Q.enqueue(T .rightChild(current))

3



At each point, Q contains all of the nodes to the right of the current node on the

current level, and all of the nodes to the left of the current node’s children on the next

level. The running time is O(n) because each node is put into the queue and taken

out of the queue exactly once.

3. (a) (5 marks) Insert into an initially empty binary search tree items with the fol-

lowing keys (in this order): 30, 40, 23, 58, 48, 26, 11, 13. Draw the tree after each

insertion.

(b) (5 marks) Remove from the binary search tree built from (a) the following keys

(in this order): 13, 40, 23. Draw the tree after each removal.

4. (10 marks) Let T be a binary search tree, and let x be a key. Give an efficient

algorithm for finding the smallest key y in T such that y > x. Note that x may or may

not be in T . Explain why your algorithm has the running time it does.

Solution: For each node v of a binary search tree, the keys in v’s left subtree are less

than v and the keys in v’s right subtree are greater than v. Thus, at each node a choice

can be made:

• if v ≤ x then y is the smallest thing larger than x in v’s right subtree (if v = x

then y is the smallest thing in the right subtree, but this is just a special case of

y being in the right subtree and does not need to be treated separately)

• if v > x then y is the smaller of v and the smallest thing greater than x in v’s left

subtree (it is not necessary to consider v’s right subtree because while everything

there is larger than x, it is also larger than v)

This leads to the following algorithm:

Algorithm findFloor(T ,x):

Input: a binary search tree T and a key x

Output: the smallest y in T such that y > x if such a y exists, and ∞ otherwise

current← T .root()

best← null

while (T .isInternal(current)) do

if (current.key() ≤ x) then

current← T.rightChild(current) { y is in right subtree }

else

best← current.key() { current node is a candidate for y }

current← T.leftChild(current) { y is in left subtree }

return best

4



Note that when best is updated we can use best ← current.key() instead of best ←

min(best, current.key()) because as soon as best is updated with the current node’s

value, we go to the left subtree and all of the keys in that subtree are less than the

current node (and the new value of best).

The running time is O(h), where h is the height of the tree, because in each iteration

of the while loop, current advances one level down the tree. Note that in the worst

case this is O(n) and in the best case it is O(log n).

5. (10 marks) Let T be a heap storing n keys. Give an efficient algorithm for reporting

all the keys in T that are smaller than or equal to a given query key x (which is not

necessarily in T ). Note that the keys do not need to be reported in sorted order. Your

algorithm should run in O(k) time, where k is the number of keys reported.

Solution: Note that if v is a node of T that is larger then x, then all the keys stored

in its subtrees are larger then x. Therefore it is enough for us to scan from the root the

nodes of T that are smaller then x. There are two basic ways to do this: a recursive

one and an iterative one that uses an external data structure (either queue or stack).

Recursive algorithm has to be run as RecurFindSmaller(T , T.root(),x) to find all keys

in T that are smaller then or equal to x.

Algorithm RecurFindSmaller(T , v, x)

Input: a heap T ; a node of T , v; a query key x

Output: keys of in the subtree of T rooted in v that are smaller or equal to x

if (T .isInternal(v)) then

if (v.key() ≤ x) then

report key v.key()

RecurFindSmaller(T , T .leftChild(v), x)

RecurFindSmaller(T , T .rightChild(v), x)

Iterative algorithm using a queue (or alternatively a stack if we replace enqueue and

dequeue methods by push and pop methods correspondingly.

Algorithm IterFindSmaller(T , x)

Input: a heap T ; a query key x

Output: keys of in the subtree of T rooted in v that are smaller or equal to x

Q is an empty queue

Q.enqueue(T .root())

while (! Q.isEmpty()) do

5



current← Q.dequeue()

if (T .isInternal(current) and current.key() ≤ x) then

report key current.key()

Q.enqueue(T .leftChild(current))

Q.enqueue(T .rightChild(current))

This algorithm runs in O(k) for the following reason. As we traverse down the tree,

each node with a key smaller or equal to x gets scanned exactly once. The only other

nodes that get scanned are their children. Given k returned keys, their k corresponding

nodes in the heap have 2k children. Despite the fact that some of their children are

the nodes whose key is ≤ x also, this still gives us the desired upper bound: we end

up scanning 3k nodes (k nodes corresponding to the reported keys, and 2k of their

children), which is O(k).

6. (5 marks) Illustrate the execution of the heap-sort algorithm on the following input

sequence: (2, 5, 16, 4, 10, 23, 39, 18, 26, 15). Show the contents of both the heap and the

sequence at each step of the algorithm.

solution:

Sequence contents at each of the above steps:

(a) (5, 16, 4, 10, 23, 39, 18, 26, 15)

(b) (16, 4, 10, 23, 39, 18, 26, 15)

(c) (4, 10, 23, 39, 18, 26, 15)

(d) (10, 23, 39, 18, 26, 15)

(e) (23, 39, 18, 26, 15)

(f) (39, 18, 26, 15)

(g) (18, 26, 15)

(h) (26, 15)

(i) (15)

(j) ()

Now come the steps that refill the sequence in sorted order.

Sequence contents during the last ten steps are:

(a) (2)

6



(b) (2, 4)

(c) (2, 4, 5)

(d) (2, 4, 5, 10)

(e) (2, 4, 5, 10, 15)

(f) (2, 4, 5, 10, 15, 16)

(g) (2, 4, 5, 10, 15, 16, 18)

(h) (2, 4, 5, 10, 15, 16, 18, 23)

(i) (2, 4, 5, 10, 15, 16, 18, 23, 26)

(j) (2, 4, 5, 10, 15, 16, 18, 23, 26, 35)

7


