
Sample Solution for CS3323 Fall 2006 Assignment 2 (37 marks)
Due Monday, Oct. 16, by 5pm.

• Assignments should be handed in by placing them in the CS3323 bin on E level of

Gillin Hall.

• A hardcopy of your program code must be submitted with your written assignment,

code must also be submitted electronically by email to hzhang@unb.ca as an attach-

ment. The name of your attachment must consist of your last name, student id,

assignment number, question number. For example, your last name is Smith, student

id is: 330321, it is the code for Question 6 in Assignment 2, then the name of your

attachment should be ”Smith-330321-2-6.java”.

1. (5 marks) Describe the output of the following series of stack operations on a single,

initially empty stack:

push(5), push(3), pop(), push(2), push(8), pop(), pop(), push(9), push(1), pop(),

push(7), push(6), pop(), pop(), push(4), pop(), pop().

solution: (bottom of the stack is to the left)

5

5 3

5

5 2

5 2 8

5 2

5

5 9

5 9 1

5 9

5 9 7

5 9 7 6

5 9 7

5 9

5 9 4

5 9

1

5

2. (5 marks) Describe the output of the following series of queue operations on a single,

initially empty queue:

enqueue(5), enqueue(3), dequeue(), enqueue(2), enqueue(8), dequeue(), dequeue(),

enqueue(9), enqueue(1), dequeue(), enqueue(7), enqueue(6), dequeue(), dequeue(),

enqueue(4), dequeue(), dequeue().

solution: The head of the queue is on the left.

5

5 3

3

3 2

3 2 8

2 8

8

8 9

8 9 1

9 1

9 1 7

9 1 7 6

1 7 6

7 6

7 6 4

6 4

4

3. (5 marks) Describe in pseudo-code a linear-time algorithm for reversing a queue Q.

To access the queue, you are only allowed to use the methods of queue ADT. Hint :

Consider using an auxiliary data structure.

solution: We empty queue Q into an initially empty stack S, and then empty S back

into Q.

Algorithm ReverseQueue(Q)

Input: queue Q

Output: queue Q in reverse order

S is an empty stack

2

while (! Q.isEmpty()) do

S.push(Q.dequeue())

while (! S.isEmpty()) do

Q.enqueue(S.pop())

4. (10 marks) Describe how to implement two stacks using one array. The total number

of elements in both stacks is limited by the array length; all stack operations should

run in O(1) time.

solution: Let us make the stacks (S1 and S2) grow from the beginning and the end

of the array (A) in opposite directions.

Let the indices T1 and T2 represent the tops of S1 and S2 correspondingly. S1 occupies

places A[0 . . . T1], while S2 occupies places A[T2 . . . (n − 1)]. The size of S1 is T1 + 1;

the size of S2 is n − T2 + 1. Stack S1 grows right while stack S2 grows left. Then we

can perform all the stack operations in constant time similarly to how it is done in the

basic array implementation of stack except for some modifications to account for the

fact that the second stack is growing in a different direction. Also to check whether

any one of the stacks is full, we check if S1.size() + S2.size()≥ n. In other words, the

stacks do not overlap if their total length does not exceed n.

5. (5 marks) Describe in pseudo-code a linear time - O(n) - algorithm which copies the

elements of array A into a new array B in such a way that B contains all the elements

of A with any odd integers located before any that are even. For example,

2 3 1 6 8 9 4 7 5 10 ← A

becomes something similar to:

3 1 9 7 5 2 6 8 4 10 ← B

Hint: The order of the integers in each grouping (odd/even) in B need not be preserved.

solution:

Algorithm oddBeforeEven(theInputQueue)

Treat the array as a queue, call it theInputQueue

returns theOutputQueue with odds before evens

Create an auxiliary data structure theStack

while (! theInputQueue.isEmpty()) do {
a ← theInputQueue.dequeue()

if (a is odd) then {
theOutputQueue.enqueue(a)

3

}
else {

theStack.push(a)

}
}
while (! theStack.isEmpty()) do {

theOutputQueue.enqueue(theStack.pop())

}

6. (12 marks) Write a Java program to calculate postfix expressions using a stack, and

convert postfix to infix. The input to your program will be text, consisting of one

expression per line. All expressions will consist of numbers and operators from the

operator set {+, -, *, /}, separated by spaces. For each expression, compute both the

infix equivalent of the expression and its value, and print them as an equation. It is

acceptable to add parentheses even if they are not needed.

If an input expression is not a correctly formed postfix expression (eg., 5+6), an error

message should be displayed.

To simplify reading the input, all numbers in the input expressions will be nonnegative

integers. This will not necessarily be true of intermediate values of the output.

Example input:

22 6 5 + / 9 -

10 7 - 17 8 1 + - *

8 5 / 3 +

5 + 6

Example output:

22 / (6 + 5) - 9 = -7

(10 - 7) * (17 - (8 + 1)) = 24

8 / 5 + 3 = 46

Not a valid postfix expression.

Marking Scheme:

• Functionality

– postfix evaluation (4 marks)

– postfix → infix conversion (4 marks)

4

• 8 test cases (4 marks - 0.5 per test case)

5

