
CS3323 Winter 2007 Assignment 6 (36 Marks)
Due Thursday, April 12, by 5pm.

• Assignments should be handed in by placing them in the CS3323 bin on E level of Gillin

Hall.

1. 11 marks) A 3-way merge sort on an array with N elements works as follows: (1)

divide the array into 3 sub-arrays of size N
3

; (2) recursively sort the 3 sub-arrays; (3).

merge the 3 sub-arrays together.

Write pseudo code of the 3-way merge sort and find its time. You may assume that N

is a power of 3.

Solution: (5 marks) Algorithm Mergesort(A, i, j):

Input: A sequence A and two indices i and j.

Output: Sorted subsequence A[i], · · · , A[j].

if (i = j) then

return

if (j − i + 1 < 3) then

x = A[i]

A[i] = A[j]

A[j] = x

return

d = b j−i+1
3
c

Mergesort(A, i, i + d− 1)

Mergesort(A, i + d, i + 2d− 1)

Mergesort(A, i + 2d, j)

Merge(A, i, i + d− 1, i + d, i + 2d− 1, i + 2d, j)

(3 marks) The initial call is Mergesort(A, 0, n − 1). The corresponding recurrence

equation is:

T (n) =

{
c if n = 1

3T (n
3
) + n otherwise

(1)

(3 marks) Solve the equation by either recursion tree. T (n) is in Θ(nlogn).

1

2. (10 marks) Give an efficient recursive algorithm for finding the k th largest element

in an array of N elements indexed from 1 to N . Make use of the partition function

used in quick-sort. Describe your algorithm in pseudo-code.

Solution:

The following recursive algorithm finds the Kth largest element in an array of N ele-

ments (which we are denoting by A). Note that initially Left should be equal to 1

and Right equal to N .

Kth Largest (Left,Right)

Let local variable X be an integer

Begin

Assign to X the value returned from Partition(Left,Right)

If X is equal to K then

We have found the Kth largest, so return A[K]

Else if X is greater than K then

Return (Kth Largest (Left,X-1))

Else

Return (Kth Largest(X+1,Right))

End

3. (5 marks) Superfast Software Inc. was founded last year by three young programmers.

They all dreamed their company would become a really big one and would distribute a

large number of software products all over the world. Thus, they decided to use 64-bit

integers to represent their inventory codes. Since it is just a one-year-old company, the

inventory database now contains only 2000 distinct product codes, in the range from 1

to 3000. At this time they need to sort these codes and one of the co-founders suggests

using a general comparison-based O(nlogn)-time sorting algorithm such as heap-sort.

But another co-founder disagrees and suggests using radix-exchange sort because it is

a so-called linear time” (that is, O(n)) algorithm. Do you think radix exchange sort

is good for this case? Explain your answer.

Solution:

It’s dangerous to evaluate the practical performance of an algorithm solely by the

big-Oh notation.

In this problem, where we use 64-bit integers to represent inventory codes in the

range 1 to 3000, radix exchange sort may be inferior to quicksort, even though its

time complexity is O(64n) = O(n). Namely, radix-exchange sort performs about

2

b × n = 64 × 2000 bit comparisons. Instead, in quicksort about n log n = 2000 × 20

integer comparisons are performed.

In most computers, integer comparisons take the same time as bit comparisons, so that

quicksort is faster.

Note that in this problem, all the leftmost 52 bits are zeros, and only the rightmost

12 bits are different. This means that radix exchange sort performs 52 useless phases

over the leftmost 52 bits.

4. (10 marks) Given an undirected graph, design an algorithm that determines how

many vertices are part of cycles in the graph.

Solution:

Algorithm InCycleDFS(G)

Input graph G

Output the number of vertices in cycles

for all u ∈ G.vertices()

setLabel(u, UNEXPLORED)

u.incycle←0

for all e ∈ G.edges()

setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()

if getLabel(v) = UNEXPLORED

allcycleDFS(G, v)

count ←0

for all vertex v

if v.incycle=1

count++

Algorithm allcycleDFS(G, v)

setLabel(v, VISITED)

S.push(v)

for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED

w ← opposite(v,e)

S.push(e)

3

if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)

allcycleDFS(G, w)

S.pop(e)

else

p ← address of the top element of S

repeat

o ←S.elements(p)

if o.incycle=0

o.incycle ←1

p ← p.next

until o = w

S.pop(v)

4

