
CS3933 Fall 2007 – Group Assignment 2
Due Thursday October 4, 2007, at 5pm.

Sample Solution

1. A warehouse contains a set of boxes, all aligned with respect to both x and y axes

of the warehouse. The position of box i is given by its xi and yi coordinates, and

each box i has a width (with respect to the x axis) specified by wi. The door to the

warehouse is along its x-axis, so the y coordinate indicates how far the box is from the

door, and the x coordinate indicates how far to the right the centre of the box is. You

can assume that no boxes are on top of each other.

A box is visible from the door if there is no box closer to the door (with a smaller y

coordinate) that overlaps all of its width (thus blocking all view of the box). Mathemat-

ically, a box i is visible if and only if there is some value k such that xi−
wi

2
≤ k ≤ xi+

wi

2

and such that for all j with yj < yi, either k < xj −
wj

2
or k > xj +

wj

2
.

Design a divide and conquer algorithm to determine which boxes are visible, and find

the sequence of visible boxes from left to right. Note that a box may be visible in

multiple places, if it is partially blocked by narrower boxes.

Your algorithm should run in time ∈ Θ(n log n), where the running time is not simply

due to sorting.

For this algorithm, we need to produce a sequence of boxes that are visible, ordered

from left to right, and (to enable the merge) we also give the edges of each visible box

part. Note that when we split, ties with respect to y-coordinate are not important,

since boxes with the same y-coordinate cannot block each other.

Algorithm:(input: set of boxes B = {(xi, yi, wi)}, number of boxes n

Sort the set of boxes B by increasing y-coordinate.

L← V isible(B, 1, n)

Algorithm Visible(set of boxes B = {(xi, yi, wi)}, indices a and b)

if b− a = 1

L← 〈(xi −
wi

2
, xi + wi

2
)〉

return L

else

N ← V isible(B, a, ba+b
2
c)

F ← V isible(B, ba+b
2
c+ 1, b)

L← merge(N, F)

1

return L

Algorithm merge(N = 〈(si, fi)〉, F = 〈(bj, ej)〉)

i← 1

j ← 1

let L be an empty list

while (i is not past end of N) or (j is not past end of F)

if bj < si or i is past end of N (so far box is leftmost)

if ej ≤ si or i is past end of N (so far box is all visible)

append (bj, ej) to L

j ← j + 1

else (far box is only partly visible)

append (bj, si) to L

bj ← si

else (near box is leftmost)

while fi > ej and j is not past end of F (far boxes are covered by near box)

j ← j + 1

if fi > bj and j is not past end of F (so left part of far box is covered)

bj ← fi

append (si, fi) to L

i← i + 1

return L

2. You are analysing a divide & conquer algorithm, and have determined that it has the

following characteristics:

• The algorithm does not recurse if n = 1

• The algorithm finds three parts of the data, each of size n
2
, in constant time

(∈ Θ(1))

• The algorithm recurses three times (each time on a part of size n
2
)

• the algorithm merges the results from the recursion in linear time (∈ Θ(n))

(a) Complete the asymptotic analysis of this algorithm, by setting up a recurrence

for T (n) and solving it. Use the recursion tree analysis method (in which you

would sum up all levels of the recursion tree). You can assume that n is a power

of 2.

T (n) =

{

0 if n = 1

3 · T (n
2
) + c · n otherwise

2

The recursion tree for this recurrence will have deepest level log2 n, since it divides

the size by 2 until it is reduced to 1.

At level k, where level 0 is the root, there will be 3k nodes, each of size n
2k . Since

the amount of work done for each node is linear, then the amount of time needed

at level k is

W (k) = 3k · c ·
n

2k
= cn ·

(

3

2

)k

Summing over all levels, the total time taken for the algorithm is

T (n) =
log2 n
∑

k=0

W (k)

=
log2 n
∑

k=0

cn ·
(

3

2

)k

= cn ·





log2 n
∑

k=0

(

3

2

)k




= cn ·







(

3
2

)log2 n+1
− 1

3
2
− 1







= 2 ·
3

2
cn

(

3

2

)log
2

n

− 2cn

= 3cn · nlog2(3

2
) − 2cn

= 3cn · nlog2 3−1 − 2cn

= 3cnlog2 3 − 2cn

Since log2 3 > 1, T (n) ∈ Θ(nlog2 3), which is approximately Θ(n1.58).

(b) Consider a change in the algorithm so that the merge of the results takes Θ(n2)

time. State the new recurrence for T (n) and complete the recursion tree analysis

to find the time complexity.

T (n) =

{

0 if n = 1

3 · T (n
2
) + c · n2 otherwise

The recursion tree for this recurrence will have deepest level log2 n, since it divides

the size by 2 until it is reduced to 1. At level k, where level 0 is the root, there

3

will be 3k nodes, each of size n
2k . Since the amount of work done for each node is

cn2, where n is the size of the node, then the amount of time needed at level k is

W (k) = 3k · c ·
(

n

2k

)2

= cn2 ·
(

3

4

)k

Summing over all levels, the total time taken for the algorithm is

T (n) =
log2 n
∑

k=0

W (k)

=
log2 n
∑

k=0

cn2 ·
(

3

4

)k

= cn2 ·





log2 n
∑

k=0

(

3

4

)k




= cn2 ·







1−
(

3
4

)log2 n+1

1− 3
4







= 4cn2 ·

(

1−
(

3

4

)log2 n+1
)

= 4cn2 − 4cn2 ·
(

3

4

)log
2

n+1

= 4cn2 − 4cn2 ·
3

4
·
(

3

4

)log2 n

= 4cn2 − 3cn2 ·
(

3

4

)log2 n

= 4cn2 − 3cn2 · nlog2(3

4
)

= 4cn2 − 3cn2 · nlog2 3−2

= 4cn2 − 3cnlog2 3

Since 3cnlog2 3 < 2, we can conclude that T (n) ∈ Θ(n2).

4

