
CS3933 Fall 2007 – Group Assignment 4
Due Wednesday November 14, at 5pm.

Note that, even though desired running times are not specified, faster algorithms are better

and thus worth more marks.

1. (12 marks) You are organizing a practice triathlon for a group of your friends. In

this triathlon, each person will complete a swim, a bike ride, and a run, in that order,

without stopping. Since this is a practice triathlon, each person’s time to complete each

segment is known, so each person j takes sj minutes to complete the swim segment, bj

minutes to complete the bike segment, and rj minutes to complete the run. However,

since this is only practice, you only have one lane in the pool, so the swim segment must

be completed one person at a time. The bike and run segments are not constrained,

so everyone can do those at once.

Supervising this entire process is quite time consuming, so you want to know what the

earliest time is that you could be done (all people having completed all three segments).

Assume that the first swimmer starts at time 0, and that you can determine the order

of the competitors.

(a) (5 marks) Design a greedy algorithm that will find the minimum completion time.

for i from 1 to n

ci ← bi + ri

sort the people by nonincreasing ci value, using mergesort

t← 0

f ← 0

for i from 1 to n (in sorted order)

if f <t + si + ci

f ← t + si + ci

t← t + si

return f

(b) (1 mark) Analyse your algorithm’s running time.

The two for loops are independent, and each iterate n times. The mergesort, also

independent, runs in Θ(n log n) time. The rest of the algorithm contributes a

constant factor, so the algorithm as a whole runs in time ∈ Θ(n log n).

(c) (6 marks) Prove that your algorithm works correctly.

1



Assume not. Then there is some input for which our greedy algorithm produces

a computation order g1, g2, . . . , gn that is not optimal. Since the greedy order

differs from all optimal orders, consider the optimal order o1, o2, . . . , on where r

is maximised so that gi = oi ∀1 ≤ i < r and gr 6= or.

Since these sequences are permutations, there will be some k such that ok = gr,

and since the sequences are identical before position r, we know that k > r.

Modify the optimal by moving ok to between or−1 and or. We now need to show

that this modification will not increase the maximum finishing time of the people

in the sequence.

For any person oi in the optimal sequence, where we use the indices in the order

that the people are listed for the optimum:

time(oi) = ci +
i

∑

j=1

sj

If i < r, nothing before or including person i has changed, so time(i) is unchanged.

If i > k, the people before person i have been rearranged, but this change in order

will not affect the sum of the sj times, so time(i) is unchanged.

If i = k: time(k) = ck +
∑k

j=1
sj has been changed to ck +

∑r−1

j=1
sj, which will be

no more than the original time(k) since r − 1 < k.

If r ≤ i < k: time(i) = ci +
∑i

j=1
sj has been changed to ci + sk +

∑i
j=1

sj ≤ ci +
∑k

j=1
sj. Since the greedy algorithm orders the people by nonincreasing ci, and

the greedy algorithm selected ok = gr before any of the oi with i ≥ r (since the

people selected before gr by the greedy algorithm were the same as the people

selected before or by the optimum), then ck ≥ ci for all r ≤ i < k. Therefore the

modified time for i is

ci + sk +
i

∑

j=1

sj ≤ ci +
k

∑

j=1

sj ≤ ck +
k

∑

j=1

sj = time(k)

so the finishing time for person i in the modified optimum is no more than time(k)

for the optimum.

Therefore no person in the modified optimum finishes after the latest person

from the original optimum, so this modified order is still optimum. However, it

contradicts the selection of the optimum that would maximise r, since it agrees

with the greedy order for the first r positions instead of only the first r − 1

positions.

Since we have a contradiction, our assumption must be wrong, and the greedy

algorithm is optimal.

2



2. (9 marks) Combinations can be calculated directly using a formula involving factori-

als, but this type of calculation performed using a computer often has serious prob-

lems either due to integer overflow from intermediate results or rounding errors from

floating-point calculations. Instead, consider the following recurrence that calculates

combinations:

C(i, j) =















0 if j > i

1 if i = j or j = 0

C(i− 1, j) + C(i− 1, j − 1) otherwise

(a) (5 marks) Design a dynamic programming algorithm that, given n and k, will

find the value of C(n, k).

if k > n return 0

Let C[0..n][0..k] be a 2-dimensional table of integers.

C[0][0]← 1

for i from 1 to n

C[i][0]← 1

for j from 1 to min(i− 1, k)

C[i][j]← C[i− 1][j] + C[i− 1][j − 1]

C[i][i]← 1

return C[n, k]

Note that they should still get full marks if the loop on j does not include the

k cutoff (and so goes to i − 1 each time). That variant will be a bit easier to

analyse, but that’s ok.

(b) (4 marks) Analyse the running time and space of your algorithm.

Time: (we consider that n ≥ k; if not, the algorithm runs in constant time.)

Upper bound:

The outer for loop iterates n times. For each of these interations, the inner for

loop iterates at most k times. The rest of the algorithm contributes at most a

constant factor, so the algorithm as a whole runs in time ∈ O(nk).

Lower bound:

Consider the i values such that i > k
2
. There will be at least n− k

2
iterations of the

outer for loop that have such an i value, and since k ≤ n, n− k
2
≥ n− n

2
= n

2
. For

each of these iterations, the inner loop (on j) iterates at least k
2

times. Therefore

the algorithm runs in time ∈ Ω(n
2
· k

2
) = Ω(nk).

3



Since the algorithm runs in time that is both ∈ O(nk) and ∈ Ω(nk), it runs in

time ∈ Θ(nk).

Note, however, that the input is two numbers; the size of the input is thus m =

2 log
2
n, so the running time is ∈ Θ(2m).

Space:

The table takes space for (n + 1)(k + 1) integers. There are 2 additional integer

counters. Thus, assuming that an integer takes constant space, this algorithm

takes Θ(kn) space.

3. (16 marks) You are running a small internet company that needs regular data com-

munications. Your communications needs are predictable. You have access to two

possible data communications plans; one has a flat fee of X dollars per month for any

amount of data, and the other has a rate fee of Y for each megabyte transferred. Both

plans have an activation fee of Z, which also applies if you switch from one plan to the

other.

You need to design and write a dynamic programming algorithm that will determine

which plan (flat or rate) you should have for each month in order to minimise your

total cost. This algorithm is given the values for X, Y , and Z, and communication

data for n months, where each month i has a megabyte amount mi.

(a) (5 marks) Design an algorithm that will, given the input data, find the minimum

total cost.

Let F and R be arrays of length n.

F [1]← Z + X

R[1]← Z + Y ·m1

for i from 2 to n

F [i]← F [i− 1] + X

if F [i] > R[i− 1] + Z + Y ·mi

F [i]← R[i− 1] + Z + Y ·mi

R[i]← R[i− 1] + Z + X

if R[i] > R[i− 1] + Y ·mi

R[i]← R[i− 1] + Y ·mi

result← F [n]

if result > R[n]

result← R[n]

return result

4



(b) (3 marks) Adapt your algorithm from (a) to find the plan schedule that produces

the minimum.

Let F and R be arrays of length n.

Let TF and TR be arrays of labels of length n.

F [1]← Z + X

R[1]← Z + Y ·m1

for i from 2 to n

F [i]← F [i− 1] + X

TF [i]← “flat”

if F [i] > R[i− 1] + Z + Y ·mi

F [i]← R[i− 1] + Z + Y ·mi

TF [i]← “rate”

R[i]← R[i− 1] + Z + X

TR[i]← “flat”

if R[i] > R[i− 1] + Y ·mi

R[i]← R[i− 1] + Y ·mi

TR[i]← “rate”

result← F [n]

last← “flat”

if result > R[n]

result← R[n]

last← “rate”

for i from n down to 1

print “month” i “is” last

if last = “flat”

last← TF [i]

else

last← TR[i]

return result

(c) (1 mark) Analyse the running time and space of your algorithm from (a).

The for loop iterates n − 1 times. All other parts of the algorithm contribute a

constant factor or term, so the algorithm runs in time ∈ Θ(n).

(d) (7 marks: 3 for code, 4 for test cases) Implement your algorithm (from (b),

preferably) and test it on three suitable test cases. Submit your source code, test

5



cases, and results.

Marking notes: The code should look like it works, and the test cases should

include some cases where the greedy approach of picking the best result for each

month (individually or cumulatively) does not work.

6


