
CS3933 Winter 2007 – Solo Assignment 2
Due Wednesday February 14, 2007, at 5pm.

Sample Solution

1. (7 marks) Design and write a Θ(n log n) divide and conquer algorithm that will, given

a sequence of n numbers, find the number of significant inversions in the sequence.

Algorithm Sig Invs(list L, number n):

returns (S, count) where S is the sorted list and count is the number of significant inversions

if n = 1

S ← L

count = 0

else

divide L into two halves:

A containing the first dn
2
e elements

B containing the remaining bn
2
c elements

(SA, cA)← Sig Invs(A, dn
2
e)

(SB, cB)← Sig Invs(B, bn
2
c)

c← 0

S ← empty list

csig ← dn
2
e

headA ← front of SA

headB ← front of SB

sig ← front of SA

while there are still elements remaining in SA or in SB

while csig 6= 0 and sig ≤ 2 · headB

advance sig to next element

csig ← csig − 1

if headB < headA

append headB to S

advance headB

c← c + csig

else (headA is larger)

append headA to S

advance headA

return (S, cA + cB + c)

Despite the nested while loops, this is still a linear time combine step, since we cannot

advance sig more than the length of SA over all iterations.

Note to marker: since an algorithm for counting the number of inversions (not neces-

sarily significant ones) was presented in class and is in the text, a significant amount

of similarity in solutions is expected.

2. (7 marks) You are analysing a divide & conquer algorithm, and have determined that

it has the following characteristics:

• The algorithm processes the data in constant time to determine 5 parts of the

data for the recursion step, where each part has size n
4

• The algorithm recurses 5 times, each time on data of size n
4

(as long as n > 1)

• the algorithm merges the results from the recursion in c · √n time (for some

constant c)

Complete the asymptotic analysis of this algorithm, by setting up a recurrence for

T (n) and solving it. Use the recursion tree analysis method (in which you would sum

up all levels of the recursion tree).

T (n) =

{

0 if n = 1

5 · T (n
4
) + c · √n otherwise

The recursion tree for this recurrence will have deepest level log4 n, since it divides the

size by 4 until it is reduced to 1. At level k, where level 0 is the root, there will be 5i

nodes, each of size n
4k . Since the amount of work done for each node is c · √n, then the

amount of time needed at level k is

W (k) = 5k · c ·
(

n

4k

)
1
2

= cn
1
2 ·

(

5

2

)k

Summing over all levels, the total time taken for the algorithm is

T (n) =
log4 n
∑

k=0

W (k)

=
log4 n
∑

k=0

cn
1
2 ·

(

5

2

)k

= cn
1
2 ·

log4 n
∑

k=0

(

5

2

)k

= cn
1
2 ·

(

5
2

)log4 n+1 − 1
5
2
− 1

=
2

3
· 5
2
cn

1
2

(

5

2

)log4 n

− 2

3
cn

1
2

=
5

3
cn

1
2 · nlog4(5

2) − 2

3
cn

1
2

=
5

3
cn

1
2 · nlog4 5− 1

2 − 2

3
cn

1
2

=
5

3
cnlog4 5 − 2

3
cn

1
2

Since log4 5 > 1
2
, T (n) ∈ Θ(nlog4 5), which is approximately Θ(n1.16).

3. (5 marks) Solve the following recurrence relation by analysing the recursion tree. Note

that you will need to calculate upper and lower bounds, since the division is asymmetric

and produces a non-complete recursion tree.

T (n) =

{

0 if n = 1

T (2n
3

) + T (n
3
) + c · n otherwise

Since the relation for T (n) recurses on two parts of sizes that sum to n, each complete

level contains n data items. Furthermore, since the nonrecursive part of the running

time is linear, and c · n
3

+ c · 2n
3

= c ·n, the time required for each complete level is c ·n;

the time required for incomplete levels will be less than c · n.

Based on the T (n
3
) part of the recurrence, the first leaf will appear at level log3 n,

since n
3log3 n = 1. So, all levels from the root (level 0) to level log3 n will be complete.

Since there are log3 n+1 complete levels, each requiring c ·n time to compute, T (n) ≥
c · n · (log3 n + 1), so T (n) ∈ Ω(n log n).

Based on the T (2n
3

) part of the recurrence, the last leaf will appear at level log 3
2
n,

since
n

(

3
2

)log 3
2

n
= 1

So, there are log 3
2
n + 1 levels in the recursion tree, each requiring at most c · n time

to compute. Thus T (n) ≤ c · n · (log 3
2
n + 1), so T (n) ∈ O(n logn). Therefore T (n) ∈

Θ(n log n).

4. (a) (8 marks) Design and write an algorithm that, given a simple undirected graph

G = (V, E) as input, will determine if it can be turned into a tree by removing

exactly one edge. Output of your algorithm should be either the edge whose

removal will turn the remaining graph into a tree, or “no” if there is no such

edge.

Analyse your algorithm’s running time.

Algorithm MoreThanTree(graph G = (V, E))

flag = 0

if |E| = |V |
flag = 1

mark all vertices as unvisited

mark all edges as unused

let s be any vertex

e = DFS Edge(G, s)

for all u ∈ V

if u is unvisited

flag = 0

if flag = 1

output e

else

output “no”

DFS Edge(graph G = (V, E), vertex s)

e = null

for all u such that (s, u) ∈ E

if u is unvisited

mark u as visited

mark (s, u) as used

e′ = DFS Edge(G, u)

if e = null

e = e′

else

if (s, u) is unused

e = (s, u)

return e

Analysis:

The depth-first search performed by DFS Edge will, in the worst case, visit all

vertices once and consider all edges twice (once per endpoint). However, the DFS

is not performed unless m = n. There are additionally three non-nested loops

that iterate n times each (one to mark vertices, one to mark the m = n edges,

and one explicit loop to check for connectivity). Thus the algorithm runs in Θ(n)

time.

(b) (8 marks) Design and write an algorithm that, given a simple undirected graph

G = (V, E) as input, will determine if it can be turned into a tree by adding

exactly one edge. Output of your algorithm should be either the edge whose

addition will turn the remaining graph into a tree, or “no” if there is no such

edge.

Analyse your algorithm’s running time.

Algorithm AlmostTree(graph G = (V, E))

mark all vertices w ∈ V as unvisited

flag = 0

if |E| = |V | − 2

Let u be any vertex

DFS(G, u)

for all w ∈ V

if w is unvisited

v ← w

flag ← 1

if flag = 1

DFS(G, v)

for all w ∈ V

if w is unvisited

flag ← 0

if flag = 0

output “no”

else

output (u, v)

DFS(graph G = (V, E), vertex s)

for all u such that (s, u) ∈ E

if u is unvisited

mark u as visited

DFS(G, u)

Analysis:

In the worst case, the algorithm will visit all vertices and consider all edges twice.

However, the traversals only occur if m = n − 2. DFS is called at most twice,

and there are three non-nested loops that either mark or check all vertices, which

add at most a constant factor to the algorithm. Thus the algorithm runs in time

∈ Θ(m + n) = Θ(n).

