
CS3933 Fall 2007 – Group Assignment 3
Due Wednesday October 17, 2007, at 5pm.

Note that although desired running times are not specified, asymptotically faster algo-

rithms are better and are thus worth more marks.

1. (a) Design and write an algorithm that, given a simple undirected graph G = (V, E)

and vertices s and t, will find the first vertex (after s) on the shortest path from

s to t (where “shortest” means “smallest number of edges”).

mark all vertices as unvisited

let Q be an empty queue

mark s as visited

enqueue s on Q

start[s]← s

start[t]← −1 (default; used if t not found)

while Q is not empty

u← dequeue(Q)

for all v such that (u, v) ∈ E

if v is unvisited

if u = s

start[v]← v

else

start[v]← start[u]

enqueue v on Q

mark v as visited

return start[t]

(b) Asymptotically analyse the running time of your algorithm from (a).

Marking the vertices as unvisited will take c · n time for some constant c. Each

vertex is visited (and thus enqueued and dequeued) at most once. For each visited

vertex u, the for loop will iterate deg(u) times, so the total number of iterations

of the for loop is at most
∑

u∈V deg(u) = 2m. In the worst case, all the edges are

part of the same connected component as s, so the for loop will iterate 2m times.

The rest of the algorithm contributes a constant factor, so the algorithm runs in

time ∈ Θ(m + n).

2. (a) Design and write an algorithm that, given a simple undirected graph G = (V, E)

and vertices s and t, determines if there is more than one simple path in G that

1



goes from s to t. Note that for two paths to be different, there only needs to be

one edge that is in one path that is not in the other path.

Idea: we mark vertices as either (potentially) above t, or below t. A backedge to a

vertex that is above t will produce a second simple path from s to t. Information

about whether t is found and whether a backedge is found (on the path from s to

t) needs to be both fed forward and fed back.

calling algorithm:

initialize all vertices to no type

initialize all edges to unused

if DFalt(G, s, t, false, false) = 3

return true

DFalt(G, u, t, found, back): returns integer (0, 1, 2, or 3)

ret← 0

if u = t

found← true

ret← 2

if found

mark u as type b

else

mark u as type a

if back

ret← ret + 1

for all v such that (u, v) ∈ E

if v has no type

mark (u, v) as used

ret = max(ret, DFalt(G, v, t, found, back))

else

if (u, v) is unused

mark (u, v) as used

if ret = 2 or (found and v is type a)

ret← 3

if v is type a

back ← true

return ret

(b) Asymptotically analyse the running time of your algorithm from (a).

2



Initializing the vertices takes Θ(n) time.

Since each vertex is marked with a type when it is visited, and we only recurse

when the vertex has no type, then there is at most one recursive call per vertex.

The for loop for a vertex u iterates deg(u) times; over all recursive calls, it will

iterate at most a total of
∑

u∈V deg(u) = 2m times. The rest of the algorithm

contributes a constant factor. In the worst case, the component containing s

includes all edges, so every edge will be examined, giving a lower bound of c ·m

for the search; thus we have a running time ∈ Θ(m + n).

3


