
CS3933 Winter 2007 – Group Assignment 4
Due Wednesday March 21, at 5pm.

Sample Solution

Note that, even though desired running times are not specified, faster algorithms are better

and thus worth more marks.

1. A set of n test cases need to be run to test a new high-tech sensor. Each case i must

first be run on the sensor for time si to collect data, and then this data is processed

by a computer in time pi. However, there is only one sensor (and only one test case

at a time can be run on it), while there are over n computers available for processing.

We want to schedule the test cases so that the entire set will be completed as soon

as possible (both data collecting and processing, for all test cases). Completion time

is defined as the elapsed time between when the first test case starts running on the

sensor to when the last test case completes processing.

(a) (4 marks) Design a greedy algorithm that will find the minimum completion time.

Hint: first devise an expression that will, given a test case order, calculate the

completion time.

Algorithm Bottleneck(n, {si}, {pi})

sort the test cases into order by decreasing (nonincreasing) pi value

time← 0

max← 0

for each test case i, in the sorted order from 1 to n

end← time + si + pi

if end > max

max← end

time← time + si

return max

(b) (1 mark) Analyse your algorithm’s running time.

The sort, using mergesort, will take time ∈ Θ(n log n). The for loop will have n

iterations, and each iteration takes constant time. Since the rest of the algorithm

takes constant time, the algorithm as a whole takes time ∈ Θ(n log n).

(c) (5 marks) Prove that your algorithm works correctly.

Proof: Assume not. Then there is some input for which our greedy algorithm

produces a computation order g1, g2, . . . , gn that is not optimal. Since the greedy

1



order differs from all optimal orders, consider the optimal order o1, o2, . . . , on

where r is maximised so that gi = oi ∀1 ≤ i < r and gr 6= or.

Since these sequences are permutations, there will be some k such that ok = gr,

and since the sequences are identical before position r, we know that k > r.

Modify the optimal by moving ok to between or−1 and or. We now need to show

that this modification will not increase the maximum completion time of jobs in

the sequence.

For any job oi in the optimal sequence, where we use the indices in the order that

the jobs are listed for the optimum:

time(oi) = pi +
i

∑

j=1

sj

If i < r, nothing before or including job i has changed, so time(i) is unchanged.

If i > k, the jobs before job i have been rearranged, but this change in order will

not affect the sum of the sj times, so time(i) is unchanged.

If i = k: time(k) = pk +
∑k

j=1
sj has been changed to pk +

∑r−1

j=1
sj, which will be

no more than the original time(k) since r − 1 < k.

If r ≤ i < k: time(i) = pi +
∑i

j=1
sj has been changed to pi +sk +

∑i
j=1

sj ≤ pi +
∑k

j=1
sj. Since the greedy algorithm orders the jobs by nonincreasing pi, and the

greedy algorithm selected ok = gr before any of the oi with i ≥ r (since the jobs

selected before gr by the greedy algorithm were the same as the jobs selected

before or by the optimum), then pk ≥ pi for all r ≤ i < k. Therefore the modified

time for i is

pi + sk +
i

∑

j=1

sj ≤ pi +
k

∑

j=1

sj ≤ pk +
k

∑

j=1

sj = time(k)

so the time for job i in the modified optimum is no more than time(k) for the

optimum.

Therefore no job in the modified optimum finishes after the latest job from the

original optimum, so this modified order is still optimum. However, it contradicts

the selection of the optimum that would maximise r, since it agrees with the

greedy order for the first r positions instead of only the first r − 1 positions.

Since we have a contradiction, our assumption must be wrong, and the greedy

algorithm is optimal.

2. Consider the following recurrence, which includes both initialization and conditional

cases (so you would use the minimum of only the cases whose conditions are met):

2



X(i, j) = min















X(i− 1, j) + ai if i > 0 and j ≥ 0

X(i− 1, j − 1) + 2 · aj if aj > i, i > 0, and j > 0

j if i = 0

Note that this recurrence is not intended to mean anything; just work with it as it is

given.

(a) (4 marks) Design a dynamic programming algorithm that, given n input values

{ai}, will find the value of X(n, n).

Algorithm X(n, {ai})

Let M be a 2-dimensional table of values, (n + 1)× (n + 1).

for j from 0 to n

M [0, j]← j

for i from 1 to n

M [i, 0]←M [i− 1, 0] + ai

for j from 1 to n

M [i, j]←M [i − 1, j] + ai

if aj > i and M [i, j] > M [i − 1, j − 1] + 2 · aj

M [i, j]←M [i− 1, j − 1] + 2 · aj

return X[n, n]

(b) (3 marks) Analyse the running time and space of your algorithm.

Time Analysis:

The first for loop iterates n + 1 times. Additionally, there is a pair of nested for

loops, each of which iterates n times, so the innermost lines of code are executed

n2 times. The rest of the algorithm provides a constant factor, so the algorithm

as a whole runs in time ∈ Θ(n2).

Space Analysis:

This algorithm uses a (n + 1)× (n + 1) table, and two additional variables. Thus

it runs in Θ(n2) space.

3. The post office sells stamps of a variety of different denominations (values), and differ-

ent sizes. Consider a set of n stamps, where each stamp i has a specific denomination

di and a size si. All denominations are distinct. All input numbers are positive. We

can use stamp denominations multiple times.

When buying stamps that total to a given postage amount P , we want to minimize

the total size of the stamps (to leave the most addressing space on the envelope).

3



(a) (6 marks) Design an algorithm that will, given the information about n stamps

(denominations {di} and sizes {si}) and a postage amount P , find the minimum

total size of stamps that will add to P (if such a set exists).

Note that we can assume that the input values are integers, since we could adjust

the input to accomodate fractions if they are not.

Algorithm Postage(n, {di}, {si}, P )

Let M be a 2-dimensional table of numbers, (n + 1)× (P + 1)

M [0, 0]← 0

for j from 1 to P

M [0, j]←∞ (no stamps but still need postage)

for i from 1 to n

M [i, 0]← 0 (no postage left to make)

for j from 1 to P

M [i, j]←M [i − 1, j]

if di ≤ j and M [i, j] > M [i, j − di] + si

M [i, j]←M [i, j − di] + si

return M [n, P ]

(b) (4 marks) Adapt your algorithm from (a) to find the set of stamps that produces

the minimum.

Algorithm Postage(n, {di}, {si}, P )

Let M be a 2-dimensional table of numbers, (n + 1)× (P + 1)

Let T be a 2-dimensional table of labels, (n + 1)× (P + 1)

Let D be a 1-dimensional array of n integers

M [0, 0]← 0

for j from 1 to P

M [0, j]←∞ (no stamps but still need postage)

for i from 1 to n

M [i, 0]← 0 (no postage left to make)

for j from 1 to P

M [i, j]←M [i − 1, j]

T [i, j]← “skip”

if di ≤ j and M [i, j] > M [i, j − di] + si

M [i, j]←M [i, j − di] + si

T [i, j]← “use”

if M [n, P ] =∞

print “postage not possible”

4



else

for i from 1 to n

D[i]← 0

Trace(T, {di}, D, n, P )

return M [n, P ]

Algorithm Trace(T , {di}, D, i, j)

if j > 0

if T [i, j] = “skip”

Trace(T, {di}, D, i− 1, j)

else

D[i]← D[i] + 1

Trace(T, {di}, D, i, j − di)

print “use di stamp”

(c) (3 marks) Analyse the running time and space of your algorithm from (a).

Time Analysis:

The first for loop iterates P times. Additionally, there is a pair of nested for

loops, which iterate n (outer) and P (inner) times, so the innermost lines of code

are executed n ·P times. The rest of the algorithm provides a constant factor, so

the algorithm as a whole runs in time ∈ Θ(nP ).

Space Analysis:

This algorithm uses a (n+1)× (P +1) table, and two additional index variables.

Thus it runs in Θ(nP ) space

(d) (7 marks: 4 for code, 3 for test cases. subtract 2 if traceback not implemented)

Implement your algorithm (from (b), preferably) and test it on three suitable test

cases. Submit your source code, test cases, and results.

The implementation should be quite straightforward, except that an appropriate

flag value for the “impossible” cases, to be used instead of ∞, needs to be chosen

and used carefully (as very large values will likely roll over). The test cases need

to include at least one impossible case, and at least one case where more than

one of a particular stamp type is needed. It should also include a non-greedy case

(where taking the largest type of stamp will not work).

5


