
CS3933 Fall 2007 – Solo Assignment 1
Due Wednesday September 26, 2007, at 5pm.

Sample Solution

1. List the following functions in ascending order of growth rate.√
n, 4log4 n = n, n log2 n,

√
n

3
, 4log2 n = n2, nlog2 n = 4log4 n·log2 n, 4n

2. Consider the following algorithm:

Algorithm Accumulate(A, n):

Input: array A of n integers, indexed from 0.

i← 0

R← A[0]

S ← 0

while i < n− 1 do

while (R ≤ A[i] and i < n− 1)

i← i + 1

R← 2 ∗R

S ← S + R

R← A[i]

return S

Analyse the running time of the algorithm using O, Ω, and Θ, as appropriate.

Each of the nested loops can iterate up to n times, but they cannot both do so at the

same time. To determine the overall running time, we need to consider all iterations

of the inner while loop, independently of which outer loop iteration they are a part.

The value of i starts at 0, and is increased by 1 for each iteration. The loops stop

iterating when i = n − 1, and i is never decreased, so the total number of iterations

of the inner while loop is exactly n− 1. The rest of the algorithm contributes only an

additional constant factor, so the overall running time of this algorithm is ∈ Θ(n).

3. Consider the following algorithm:

Algorithm Numbers(A,n):

Input: array A of n positive integers.

S ← 0

for i from 1 to n− 1 do

for j from i + 1 to n do

P ← 1

1



for k from 1 to i · j do

P ← P · A[j]

S ← S + P

return S

(a) Analyse the running time of this algorithm, using O, Ω, and Θ, as appropriate.

Upper bound: The outer for loop (on i) iterates exactly n− 1 times. For each of

the outer iterations, the middle loop (on j) iterates at most n− 1 times. For each

of these middle iterations, the innermost loop iterates at most (n − 1) · n times.

The rest of the algorithm takes constant time, so the algorithm as a whole runs

in time ∈ O((n− 1)3 · n) = O(n4).

Lower bound: The middle loop requires j > i (so, to have many j values, i cannot

be too high), and the inner loop requires k ≤ i · j (so, to have many k values,

each of i and j cannot be too low).

Consider the outer loop iterations where n

3
< i < 2n

3
. Further consider the middle

loop iterations where j > 2n

3
. Then j > i as required by the algorithm. There are

at least n

3
− 1 iterations of the outer loop, and each of these outer iterations will

have at least n

3
− 1 iterations of the middle loop. For each of these, the inner loop

has i · j iterations, which is at least n

3
· 2n

3
= 2n

2

9
.

Therefore there are at least (n

3
− 1)2 · 2n

2

9
total interations of the inner loop, so

the algorithm runs in time ∈ Ω((n

3
− 1)2 · 2n2

9
) = Ω(n4).

Since this algorithm runs in time ∈ O(n4) and ∈ Ω(n4), it runs in time ∈ Θ(n4).

(b) Now that you have determined the degree of the polynomial, figure out the exact

polynomial function for how many times the statement P ← P · A[j] is executed

in terms of the input size n.

Determine the polynomial by implementing the algorithm, testing it for various

sizes n, and solving for the unknown polynomial coefficients. Please submit your

test case results (n and corresponding count) as well as your polynomial function.

Note that how you solve for your coefficients is not an essential part of the as-

signment; it’s just a step in finding the function (so you do not need to show your

work for the coefficient solving, and indeed can solve them however you like).

2



n c(n)

1 0

2 2

3 11

4 35

5 85

6 175

This data produces the polynomial n4

8
+ n3

12
− n2

8
− n

12
. Note that n = 6 was not needed

to find this polynomial, but was included for confirmation.

4. Consider a modified mergesort algorithm so that it splits the input not into two sets

of almost-equal sizes, but into four sets of sizes approximately one-quarter. Write an

algorithm for this modified sorting algorithm. Asymptotically analyze it by establishing

a recurrence equation first, then analysing the recurrence tree of the algorithm. You

can make assumptions about the instance sizes considered in order to simplify your

math, as long as the sizes can still be arbitrarily large.

The following recursive algorithm should be called as QuadSort(A, 0, n − 1). The

merge call is to a linear-time four-way merge.

Algorithm QuadSort(array A, integer a, integer b)

if (a = b) return

mid1← a + b b−a

4
c

mid2← a + b b−a

2
c

mid3← b− d b−a

4
e

QuadSort(A, a, mid1)

QuadSort(A, mid1 + 1, mid2)

QuadSort(A, mid2 + 1, mid3)

QuadSort(A, mid3 + 1, b)

merge (A[a..mid1], A[mid1 + 1..mid2], A[mid2 + 1..mid3], A[mid3 + 1..b])

storing result of merge in A[a..b].

return

Analysis:

For simplicity, let us assume that n is a power of 4. Then our running time is given by

the recurrence:

T (n) =

{

0 if n = 1

4 · T (n

4
) + c · n otherwise

3



The recursion tree for this recurrence will have height log4 n, since the height h is the

level where
n

4h
= 1

which is true if and only if h = log4 n.

At level k, where level 0 is the root, there will be 4k nodes, each of size n

4k . Since the

amount of work done for each node is linear, then the amount of time needed at level

k is

W (k) = 4k · c · n

4k
= cn ·

(

4

4

)k

= cn

Summing over all levels, the total time taken for the algorithm is

T (n) =
log4 n
∑

k=0

W (k)

=
log4 n
∑

k=0

cn

= cn ·




log4 n
∑

k=0

1





= cn · (log4 n + 1)

So T (n) ∈ Θ(n log n).

4


