CS3933 Winter 2007 — Group Assignment 2
Due Wednesday February 7, 2007, at 5pm.

1. (6 marks) For the overall input S to have an equivalence class of size > %, that
equivalence class must contain more than % items from one half of 5. For our algorithm

to run in O(nlogn) time, we need a linear time combine step.

Algorithm Equiv(set S, size n): returns (z, count, flag) where flag = 0 if S” does not exist;
if S’ does exist, flag =1, count = |S’|, and z is an element of S’
ifn>1
split S into two halves, Sy (size [§]) and S, (size |])
(21, c1, f1) = Equiv(Sy, [3])
(w2, €2, f2) = Equiv(Ss, [3])
flag =0
x = null
if fi=1
count = ¢
for all elements 7 in Ss
if ¢ is equivalent to x;
count = count + 1
if count > 3

flag=1
T =1
if flag=0and f, =1
count = cy

for all elements ¢ in S
if 7 is equivalent to xs
count = count + 1
if count > 3
flag =1
T =T
else (n=1)
x = sole element of S
count =1
flag =1
return (x, count, flag)

2. You are analysing a divide & conquer algorithm, and have determined that it has the

following characteristics:

(a)

The algorithm does not recurse if n =1

The algorithm splits the data into three parts, each of size %, in linear time

(€ ©(n))

The algorithm recurses four times (each time on a part of size %)

w3

the algorithm merges the results from the recursion in linear (€ O(n)) time

(6 marks) Complete the asymptotic analysis of this algorithm, by setting up a
recurrence for T'(n) and solving it. Use the recursion tree analysis method (in
which you would sum up all levels of the recursion tree). You can assume that n
is a power of 3.

0 itn=1
4-T(%)+c-n otherwise

(o) - {

The recursion tree for this recurrence will have deepest level logs n, since it divides
the size by 3 until it is reduced to 1 . At level k, where level 0 is the root, there
will be 4° nodes, each of size 35+ Since the amount of work done for each node is
linear, then the amount of time needed at level k is

k
ok no 4
W(k) = 4 g = o <§)
Summing over all levels, the total time taken for the algorithm is

logs n

T(n) = Y W(k)

k=0

logsn 4\ k
- (£
k=0 3

= den - n=(5) — 3en
= den-n'stt — 3en
= 4cn'8t — 3en
Since log;4 > 1, T'(n) € ©(n'°%s4), which is approximately ©(n!%6).

(4 marks) Consider a change in the algorithm so that the merge of the results
takes ©(n?) time. State the new recurrence for T'(n) and complete the recursion
tree analysis to find the time complexity.

0 itn=1
4-T(%)+c-n* otherwise

T(n) = {

The recursion tree for this recurrence will have deepest level logs n, since it divides
the size by 3 until it is reduced to 1. At level k, where level 0 is the root, there
will be 4° nodes, each of size 35+ Since the amount of work done for each node is
cn?, then the amount of time needed at level k is

v e (3) o3

Summing over all levels, the total time taken for the algorithm is

== Cn2 1
9
9 4 logs n+1
=3t (1-(5)")
9 logs n+1
:_.Cn2_g.cn2.(é> ’
3 3 9

logs n+1
Since (%) """ is a decreasing function, we can conclude that T(n) € ©(n?).

