
CS3933 Assignment 11
Summer 2007

Due: Tuesday, August 7, in class or by 10:00am in the box on E-level.

• Read chapter 8 a third time.

• I will try to explain the bonus question that I included in assignment
10, but failed to explain adequately.

You have two bottles that you are allowed to break, and a ladder that
you can climb. Your client want to know from which rungs on the
ladder a bottle can be dropped and not break, and from which ones it
will break. There must be an integer k such that for any rung above
k, a dropped bottle will break, but for rung k and below it will not
break. Suppose that you only want to drop bottles no more than n
times. What is the largest value g(n) such that if k ≤ g(n), you can
determine k without dropping bottles more than n times?

This can be solved using a dynamic program.

I will give you the best algorithm for the case n = 2. Drop the first
bottle from rung 2. If it breaks, then drop the second bottle from rung
1. If the second bottle breaks, k = 0; if the second bottle does not
break then k = 1. Otherwise the first bottle did not break, in which
case you drop the second bottle from rung 3. Now if the second bottle
breaks, k = 2. If the second bottle does not break, then k ≤ 3, and
you cannot determine k without dropping bottles again, and you are
not allowing yourself to do that. Thus g(2) = 3.

Your problem to solve for me, is to determine the first 10 values of
g(n), for n = 0, 1, . . . , 9. The main thing to do is to find a recurrence
relation for g. You do have to explain why the recurrence is correct,
by specifying from which rungs the bottles should be dropped.

• Do question 2 on page 505. Hint: transform (reduce is the text’s word)
from either Set Cover or Vertex Cover, to prove NP-hardness.

To solve a dynamic programming problem, you must define a mathe-
matical function in terms of the inputs, then give a recurrence relation
that it must satisfy (including a base case), and explain how you can
calculate the function iteratively.

To prove a problem P is NP-complete, you must



1. Show that the problem P is in NP .

2. Choose some other known NP-complete problem Q.

3. Reduce Q to P , ie. show that Q ≤P P .


