
CS3933 Winter 2007 – Solo Assignment 3
Due Wednesday October 31, 2007, at 5pm.

Sample Solution

Note that, even though desired running times are not specified, faster algorithms are better

and thus worth more marks.

1. (10 marks: 8 for the algorithm, 2 for the time analysis)

Design and write an algorithm that, given a directed graph D = (V, E) and a vertex

s, will find a t (if there is one) such that there is more than one simple path in D from

s to t.

Analyse the running time of your algorithm.

Basic idea of solution: in a DFS, keep track not only of whether a vertex has been

previously seen, but whether it is still on the stack (and thus part of a path to the

current vertex) or has been removed from the stack.

Algorithm TwoPath(directed graph D, source vertex s): returns vertex t

Mark all vertices as unvisited

return findt(D, s)

Algorithm findt(directed graph D, vertex u): returns vertex t

mark u as stacked

t← 0

for all v such that (u, v) ∈ E

if v is unvisited

if t = 0

t← findt(D, v)

else

if v is processed

t← v

mark u as processed

return t

Time Analysis:

The loop in TwoPath iterates n times (to mark all vertices as univisted). findt is

recursive, and will, in the worst case where the entire graph must be searched, have

1



one instantiation for each vertex. The for loop iterates a number of times equal to the

degree of the vertex, so over all instantiations of findt, it will iterate 2m times in the

worst case. The rest of the algorithm contributes a constant factor, so the algorithm

as a whole runs in time ∈ Θ(m + n).

2. (10 marks: 8 for the algorithm, 2 for the time analysis)

Design and write an algorithm that, given a weighted undirected graph G = (V, E)

(where each edge e has a weight w(e) > 0), a vertex s, and a vertex t, will find the

length of the second shortest path from s to t (where the length of the path is the sum

of its edge weights). The second shortest path need not be simple.

Analyse the running time of your algorithm.

Basic idea: each vertex needs to be in the priority queue twice, once for its shortest

distance from s and once for its second shortest distance from s. We will need to revisit

vertices, so we should not mark them off as visited.

Algorithm Second(weighted graph G = (V, E), s, t): returns number

Let PQ be an empty priority queue (using a min heap)

for all u ∈ V

d1[u]←∞

add (u, 1) to PQ with priority d1[u]

d2[u]←∞

add (u, 2) to PQ with priority d2[u]

d1[s] = 0

reprioritise (s, 1) in PQ with priority 0

done← false

while done = false and PQ is not empty

(u, x)← dequeue(PQ)

if u = t and x = 2

done← true

for all v such that (u, v) ∈ E

d← dx[u] + w(u, v)

if d <d1[v]

d2[v]← d1[v]

reprioritise (v, 2) in PQ with priority d2[v]

d1[v]← d

reprioritise (v, 1) in PQ with priority d1[v]

else

2



if d <d2[v]

d2[v]← d

reprioritise (v, 2) in PQ with priority d2[v]

return d2[t]

Time Analysis:

All the heap operations, in the worst case, take Θ(log n) time. There are 2n + 1 heap

operations used to initialise the heap; however, the first 2n operations will not require

restructuring of the heap, so the total time needed to initialise PQ is n + log n. The

while loop iterates 2n times in the worst case (each vertex having to be dequeued

twice). Within the while loop, the for loop iterates deg(u) times. In the worst case

where each vertex is dequeued twice, each vertex occurs as u twice, so the total number

of for loop iterations (over all while loop iterations) is 2 ·
∑

u∈V deg(u) = 4m. Since

each iteration of the for loop contains a constant number of heap operations, and the

rest of the algorithm contributes a constant factor, the algorithm as a whole runs in

time ∈ Θ(n + m log n).

3. (15 marks) (seen recently at a programming contest near you...)

You run a small photocopying service with a single large machine. Every morning you

get a set of jobs from customers. You want to do the jobs in the order that keeps

the customers happiest. Let customer i’s job take time ti to do. Given a schedule, an

ordering of all the jobs, let ci be the time at which this job is completed, which equals

the sum of all the times of all the jobs that are done before plus ti. For example if job

i is done first then ci = ti, and if job i is done immediately after job j, then ci = cj + ti.

The happiness of a customer is assumed to be proportional to the completion time of

their job. You want to minimize the sum of the completion times, c1 + c2 + . . . cn. You

need an algorithm that, when the times of the customers jobs are given, returns the

best order in which to do the jobs.

(a) (4 marks) Design and write a greedy algorithm that, given the set of job times

{tj}, will find a schedule for the jobs that will minimise the sum of the completion

times.

sort the set of jobs by nondescending completion time tj, using mergesort.

t← 0

for j from 1 to n, in sorted order

sj ← t

3



cj ← sj + tj

t← cj

(b) (1 marks) Analyse the running time of your algorithm.

The sort will take Θ(n log n) time. The for loop will iterate exactly n times. The

rest of the algorithm takes constant time, so the algorithm as a whole runs in

time ∈ Θ(n log n + n) = Θ(n log n).

(c) (6 marks) Prove that your algorithm works correctly.

Assume not. Then there is some input instance such that the greedy algorithm

is not optimal.

Let g1, g2, . . . , gn be the indices in the greedy order, and let o1, o2, . . . , on be the

indices in an optimal order. We can assume, without loss of generality, that the

optimal order considered is the one that agrees with the greedy for the longest, ie.

over all optimal orders, it has the largest value of r such that gi = oi ∀1 ≤ i < r

and gr 6= or.

Let k be such that ok = gr (the index position of gr in the optimal order). Since

position r is the first point of difference, k > r. Since the greedy algorithm picks

shorter jobs first, tgr
≤ tor

, so tok
≤ tor

.

The sum of the optimal is:

Opt =
n∑

i=1

i∑

j=1

toj

Modify the optimal by swapping ok with or, producing the sequence

o1, . . . , or−1, ok, or+1, . . . , ok−1, or, ok+1, . . . , on

This sequence agrees with the greedy order longer than the optimal does; if it is

also an optimal sequence, then we will contradict the maximality of r.

In the modified optimal, jobs o1 through or−1 and ok+1 through on have exactly

the same jobs before them (even if the order has changed for the later jobs), so

their completion time has not changed.

For a job j such that r < j < k, its completion time will have changed by

(tok
− tor

), which is ≤ 0 since tok
≤ tor

.

The completion time of job r will have increased by tok
+

∑k−1

j=r+1 toj
. Similarly, the

completion time of job k will have decreased by tor
+

∑k−1

j=r+1 toj
. Taken together,

the sum of their completion times will have changed by (tok
− tor

), which is ≤ 0.

Therefore the sum of completion times of the modified optimal solution is not

larger than the sum for the original optimal, so this modification preserves opti-

mality. Since it violates the maximality of r among optimal orders, this produces

a contradiction.

4



Therefore our original assumption is false, so the greedy algorithm is always op-

timal.

(d) (4 marks) Consider a different algorithm where the order in which the jobs are

considered is the reverse of the order you used in (a). Give a counterexample to

show that this order will not always work.

Let n = 2, with t1 = 5 and t2 = 1. The jobs are thus already in the reverse of

nondescending order.

The sum of completion times is: c1 + c2 = 5 + (5 + 2) = 12,

while completing job 2 first would produce the sum 2 + (2 + 5) = 9 < 12. Thus

the reverse order does not work for this example.

5


