
CS3933 Winter 2007 – Group Assignment 2
Due Wednesday February 7, 2007, at 5pm.

1. (6 marks) For the overall input S to have an equivalence class of size > n

2
, that

equivalence class must contain more than n

4
items from one half of S. For our algorithm

to run in O(n log n) time, we need a linear time combine step.

Algorithm Equiv(set S, size n): returns (x, count, f lag) where flag = 0 if S ′ does not exist;

if S ′ does exist, flag = 1, count = |S ′|, and x is an element of S ′

if n > 1

split S into two halves, S1 (size dn

2
e) and S2 (size bn

2
c)

(x1, c1, f1) = Equiv(S1, d
n

2
e)

(x2, c2, f2) = Equiv(S2, b
n

2
c)

flag = 0

x = null

if f1 = 1

count = c1

for all elements i in S2

if i is equivalent to x1

count = count + 1

if count > n

2

flag = 1

x = x1

if flag = 0 and f2 = 1

count = c2

for all elements i in S1

if i is equivalent to x2

count = count + 1

if count > n

2

flag = 1

x = x2

else (n=1)

x = sole element of S

count = 1

flag = 1

return (x, count, f lag)



2. You are analysing a divide & conquer algorithm, and have determined that it has the

following characteristics:

• The algorithm does not recurse if n = 1

• The algorithm splits the data into three parts, each of size n

3
, in linear time

(∈ Θ(n))

• The algorithm recurses four times (each time on a part of size n

3
)

• the algorithm merges the results from the recursion in linear (∈ O(n)) time

(a) (6 marks) Complete the asymptotic analysis of this algorithm, by setting up a

recurrence for T (n) and solving it. Use the recursion tree analysis method (in

which you would sum up all levels of the recursion tree). You can assume that n

is a power of 3.

T (n) =

{

0 if n = 1

4 · T (n

3
) + c · n otherwise

The recursion tree for this recurrence will have deepest level log3 n, since it divides

the size by 3 until it is reduced to 1 . At level k, where level 0 is the root, there

will be 4i nodes, each of size n

3k . Since the amount of work done for each node is

linear, then the amount of time needed at level k is

W (k) = 4k · c ·
n

3k
= cn ·

(

4

3

)k

Summing over all levels, the total time taken for the algorithm is

T (n) =
log3 n
∑

k=0

W (k)

=
logk n
∑

k=0

cn ·
(

4

3

)k

= cn ·





log3 n
∑

k=0

(

4

3

)k





= cn ·







(

4
3

)log3 n+1
− 1

4
3
− 1







= 3 ·
4

3
cn

(

4

3

)log3 n

− 3cn



= 4cn · nlog3( 4

3
) − 3cn

= 4cn · nlog3 4−1 − 3cn

= 4cnlog3 4 − 3cn

Since log3 4 > 1, T (n) ∈ Θ(nlog3 4), which is approximately Θ(n1.26).

(b) (4 marks) Consider a change in the algorithm so that the merge of the results

takes Θ(n2) time. State the new recurrence for T (n) and complete the recursion

tree analysis to find the time complexity.

T (n) =

{

0 if n = 1

4 · T (n

3
) + c · n2 otherwise

The recursion tree for this recurrence will have deepest level log3 n, since it divides

the size by 3 until it is reduced to 1. At level k, where level 0 is the root, there

will be 4i nodes, each of size n

3k . Since the amount of work done for each node is

cn2, then the amount of time needed at level k is

W (k) = 4k · c ·
(

n

3k

)2

= cn2 ·
(

4

9

)k

Summing over all levels, the total time taken for the algorithm is

T (n) =
log3 n
∑

k=0

W (k)

=
logk n
∑

k=0

cn2 ·
(

4

9

)k

= cn2 ·





log3 n
∑

k=0

(

4

9

)k





= cn2 ·







1 −
(

4
9

)log3 n+1

1 − 4
9







=
9

5
· cn2 ·

(

1 −
(

4

9

)log3 n+1
)

=
9

5
· cn2 −

9

5
· cn2 ·

(

4

9

)log3 n+1

Since
(

4
9

)log3 n+1
is a decreasing function, we can conclude that T (n) ∈ Θ(n2).


