
CS3933 Winter 2007 – Solo Assignment 1
Due Wednesday January 31, 2007, at 5pm.

1. List the following functions in ascending order of growth rate.

• nlog
2

n

• n2 log2 n

• 4log
2

n

• √n

• 22n

• √n
5

• √n
n

2. Prove or disprove, using the definitions of O, Ω, and Θ, that

(a) 3n log2 n ∈ O(5n2)

(b) 2n 6∈ Ω(4n)

3. Consider the following algorithm:

Algorithm Spin(n):

Input: positive integer n.

x← 0

for i from 1 to n

for j from i to n

x← x + 1

return x

Analyse the running time of this algorithm in terms of the size of its input (rather

than in terms of n, the input value itself). Use O, Ω, and Θ, as appropriate.

1



4. Consider the following algorithm:

Algorithm Run(A, n, m):

Input: 2-dimensional array A of real numbers, with n rows and m columns.

i← 0

j ← 0

while i < n− 1 or j < m− 1 do

while (A[i, j] < A[i + 1, j] and i < n− 1)

i← i + 1

print “down”

j ← j + 1

while (A[i, j] < A[i, j + 1] and j < m− 1)

j ← j + 1

print “right”

i← i + 1

Analyse the running time of the algorithm using O, Ω, and Θ, as appropriate.

5. Consider the following algorithm:

Algorithm Numbers(A,n):

Input: array A of n positive integers.

S ← 0

for i from 0 to n− 1 do

for j from 0 to i do

P ← 1

for k from i to n− 1 do

P ← P ∗ A[k]

for k from i to j do

P ← P ∗ A[k]

S ← S + P

return S

(a) Analyse the running time of this algorithm, using O, Ω, and Θ, as appropriate.

(b) Now that you have determined the degree of the polynomial, figure out the exact

polynomial function for how many times the statement P ← P ∗A[k] is executed

in terms of the input size n.

Determine the polynomial by implementing the algorithm, testing it for various

2



sizes n, and solving for the unknown polynomial coefficients. Please submit your

test case results (n and corresponding count) as well as your polynomial function.

Note that how you solve for your coefficients is not an essential part of the as-

signment; it’s just a step in finding the function (so you do not need to show your

work for the coefficient solving, and indeed can solve them however you like).

6. Consider a modified mergesort algorithm so that it splits the input not into two sets

of almost-equal sizes, but into three sets of sizes approximately one-third. Write an

algorithm for this ternary sorting algorithm. Asymptotically analyze it by establishing

a recurrence equation first, then analysing the recurrence tree of the algorithm. You

can make assumptions about the instance sizes considered in order to simplify your

math, as long as the sizes can still be arbitrarily large.

3


