
CS3933 Winter 2007 – Solo Assignment 3
Due Wednesday March 14, 2007, at 5pm.

Sample Solution

Note that, even though desired running times are not specified, faster algorithms are better

and thus worth more marks.

1. (a) (7 marks) Design and write an algorithm that, given an undirected graph G =

(V, E) and a vertex s, will find if there is a cycle that contains s.

Analyse the running time of your algorithm.

Basic idea: compute a DFS from s, and look for a backedge that goes back to s.

Algorithm FindCycle(graph G = (V, E), source s): returns boolean

mark all vertices as unvisited

mark all edges as unused

mark s as visited

iscycle← DFSCycle(G, s, s)

return iscycle

Algorithm DFSCycle(graph G = (V, E), source s, vertex u): returns boolean

retval ← false

for all v such that (u, v) ∈ E

if v is unvisited

mark v as visited

mark (u, v) as used

if retval = false

retval ← DFSCycle(G, s, v)

else

if (u, v) is unused and v = s

retval ← true

return retval

Time analysis:

The DFS will need to initialise each vertex and each edge. The traversal will look

at each edge twice (once per endpoint) in the worst case (where it needs to visit

the entire graph before finding a backedge to s), and the rest of the computation

steps take constant time, so the algorithm as a whole takes time ∈ Θ(m + n).

1

(b) (9 marks) Design and write an algorithm that, given a weighted graph G = (V, E)

(where each edge e has a weight w(e)) and a vertex s, will find the weight of the

minimum weight cycle that contains s.

Analyse the running time of your algorithm.

Basic idea: adapt Dijkstra’s Shortest Path algorithm for graphs with weighted edges,

so that it keeps track of the shortest and second-shortest distance to a vertex (where

the “second” shortest has a different initial edge). The first vertex to have both of its

distances removed from the priority queue will form (from these paths) the minimum

cost cycle including s.

Algorithm MinCycle(graph G = (V, E), weight function w vertex s)

mark all edges as unused

Let P be a priority queue (using a min heap)

min←∞

Let d1 be an array of values, one per vertex, all set to ∞

Let d2 be an array of values, one per vertex, all set to ∞

d1[s]← d2[s]← 0

for all u such that (s, u) ∈ E

d1[u]← w(s, u)

add u to P with label 1, (s, u) and priority w(s, u)

mark (s, u) as used

while P is not empty and min =∞

u← dequeue(P)

if u has label 2, e

min← d1[u] + d2[u]

else (u has label 1, e)

for all v such that (u, v) ∈ E and (u, v) is unused

mark (u, v) as used

if d1[v] =∞

d1[v]← d1[u] + w(u, v)

add v to P with label 1, e and priority d1[v]

else

if d1[v] > d1[u] + w(u, v)

Let x be the edge such that 1, x is a label of v in P

if x 6= e

d2[v]← d1[v]

add (or reprioritise) v in P with label 2, x and priority d2[v]

2

d1[v]← d1[u] + w(u, v)

reprioritise v in P with label 1, e and priority d1[v]

else

if d2[v] > d1[u] + w(u, v) and d1[v] has label 1, x with x 6= e

d2[v]← d1[u] + w(u, v)

add (or reprioritise) v in P with label 2, e and priority d2[v]

return min

Running time:

This algorithm, in the worst case, visits all vertices once and uses all edges. The total

number of iterations (of the while loop and for loop nested inside it) is 2 · |E| in the

worst case; for each of these iterations, two priority queue operations are needed. Each

of the n iterations of the while loop requires an additional priority queue operation. All

priority queue operations, using a min heap, will take Θ(log n) time (since the priority

queue will have at most 2n nodes). Thus the work done by the algorithm (except

for initialization) takes time ∈ Θ(m log n). The initialization takes Θ(n) time, so the

algorithm as a whole takes time ∈ Θ(n + m log n) time.

Alternative methodology (slower, worth 6 marks incl. time analysis):

(note that to get all of these marks, you would need to fill in the Shortest Path algorithm

for weighted graph – you can use Dijkstra’s algorithm).

min =∞

for all u such that (s, u) ∈ E

d = ShortestPath((V, E − {(s, u)}, u, s)

if min > d + w(s, u)

min = d + w(s, u)

return min

This methodology calls the shortest path algorithm (which runs in time ∈ Θ(n +

m log n)) deg(s) times. In the worst case, deg(s) = n− 1, so it runs in time ∈ Θ(n2 +

nm log n).

2. You are trying to earn some money by working independently. You have total time T

to spend on this work, and there is a set of n projects, where a project p takes time tp

(an integer number of hours) and will pay you dp dollars (for project p as a whole).

This work is independent, so you can schedule your work as you want (within your

available time T). Also, these projects pay by the hour, so you can earn money even

from incompleted projects; if you worked some fraction of tp on the project, you would

3

get that same fraction of dp as your pay. You cannot work more than tp hours on

project p.

(a) (4 marks) Design and write a greedy algorithm that, given the time T , set of

project times {tp}, and set of project dollar amounts {dp}. will find a schedule

for you that will maxmise the total dollars that you can earn within your time

limit T .

Algorithm MaxEarnings(n, {tp}, {dp}, T)

sort the projects by descending (nonincreasing) rate dp

tp

sum← 0

time← 0

for all projects p in sorted order

if time < T

frac = min{T−time,tp}
tp

print “work at job j at time time for tp · frac hours”

time← time + tp · frac

sum← dp · frac

return sum

(b) (1 mark) Analyse the running time of your algorithm.

The sort, using mergesort, will take time ∈ Θ(n log n). The for loop will have n

iterations, and each iteration takes constant time. Since the rest of the algorithm

takes constant time, the algorithm as a whole takes time ∈ Θ(n log n).

(c) (5 marks) Prove that your algorithm works correctly.

Proof: assume not. Then there is an input for which the greedy algorithm does

not produce the optimal.

For each job j, let gj be the fraction of the job to be done in the greedy schedule,

and let oj be the fraction of the job to be done in the optimal schedule. If there

is more than one optimum job fraction assignment, we will consider the one that,

where the jobs are ordered in the nonincreasing dp

tp
greedy order, r is the maximum

index possible where gr 6= or and gi = oi ∀1 ≤ i < r.

Since the greedy algorithm will take all of a job as long as there is time remaining

(within the limit) to work, gr > or, and the optimum selection spends tr · (gr−or)

time on some other jobs that the greedy algorithm does not work all of (so that

there are tr · (gr− or) hours that the optimum works on jobs other than what the

greedy does). Since the greedy algorithm picks the jobs with the highest rate of

pay, the optimum works this time to get an amount no higher than dr · (gr − or).

4

Modify the optimum to move those tr · (gr − or) hours to job r; this will change

the optimum result to agree longer with the greedy algorithm’s result while not

decreasing the total amount of money earned, thus contradicting the maximality

of r for the optimum.

Therefore the assumption is false, and the greedy algorithm does always produce

the optimum result.

(d) (3 marks) Consider a different situation where you are only paid for a job if you

complete all of it. Give, and demonstrate, a counterexample that shows that your

algorithm from (a) will not work in this situation.

Consider a situation where T = 10, and there are three jobs: t1 = 6, d1 = 18,

t2 = 5, d2 = 10, t3 = 5, d3 = 10.

The greedy algorithm will pick job 1 first (since it pays 3 dollars per hour, versus

2 dollars per hour for each of the other two jobs), but then has no time left for

another complete job, so it would pay a total of 18 dollars. However, the other

two jobs together would take 10 hours and pay 20 dollars, so the greedy algorithm

does not find the optimum.

3. (4 marks) You are trying to weigh a set of n books, where each book j has a corre-

sponding positive height hj. The weighing apparatus is a special type that needs to be

adjusted to fit the height of the book, so weighing a book j will take time 1+|hj−hj−1|,

where hj is the height of book j, and hj−1 is the height of the book weighed immedi-

ately before book j. The first book weighed (book 1) would take time 1+h1. You can

weigh the books in any order.

(a) Design and write a greedy algorithm that will find the minimum time required to

weigh all the books.

Algorithm MinTime(n, {hj})

sort the books by ascending (nondecreasing) height hj

time← 1 + h1

for all books j in sorted order, from 2 to n

time← time + 1 + hj − hj−1

return time

(b) (1 mark) Analyse the running time of your algorithm.

The sort, using mergesort, will take time ∈ Θ(n log n). The for loop will have n

iterations, and each iteration takes constant time. Since the rest of the algorithm

takes constant time, the algorithm as a whole takes time ∈ Θ(n log n).

5

(c) (5 marks) Prove that your algorithm works correctly.

Proof: Assume not.

Then there is some input such that the greedy algorithm does not produce an

optimum. Let the greedy order be represented by g1, g2, . . . , gn, and consider

the optimum order o1, o2, . . . , on that agrees with the greedy order the longest

(maximising r such that gi = oi ∀1 ≤ i < r and or 6= gr).

Let k be the index such that gr = ok. Since oi = gi for all i < r, and or 6= gr, we

must have k > r. Since the greedy algorithm sorts in ascending order, ok = gr ≤

or.

Let Opt represent the value of the optimum. If we modify the optimum by moving

ok to just before or, we get the modified optimum result

ModOpt = Opt−(|or−or−1|)+(|ok−or−1|+|or−ok|)−(|ok−ok−1|+|ok+1−ok|)+(|ok+1−ok−1|)

Since or−1 ≤ ok ≤ or: (|or − or−1|) = (|ok − or−1|+ |or − ok|).

Since ok = gr ≤ ok−1 and ok = gr ≤ ok+1: (|ok−ok−1|+|ok+1−ok|) ≥ (|ok+1−ok−1|).

So ModOpt ≤ Opt, and thus either improves or maintains the optimum while

also agreeing with the greedy algorithm for a longer prefix. This contradicts our

optimum being the optimum with the longest common prefix with the greedy.

Therefore our assumption is false, and the greedy algorithm is optimal.

6

