
CS3933 Winter 2007 – Solo Assignment 2
Due Wednesday October 10, 2007, at 5pm.

1. (a) Design a divide and conquer algorithm to solve the following problem in O(log n)

time.

Given: a sequence A = 〈a1, a2, . . . , an〉 of distinct integers, that you know is in

nondecreasing (ascending) order.

Find: an index i such that ai = i, or determine that no such index exists

Note that if there are multiple i for which ai = i, any of them will do.

(b) Asymptotically analyse your algorithm to show that its running time is ∈ O(log n).

This algorithm would be called as stillpoint(A, 1, n). It returns 0 if there is no index

that meets the criterion.

Algorithm stillpoint(A, x, y): returns index value j

if (x > y)

j ← 0

else

if ai = i

j ← i

else

if ai < i

j ← stillpoint(i + 1, y)

else (ai > i)

j ← stillpoint(x, i − 1)

return j

Analysis:

This algorithm is recursive. It contains no loops, so each instantiation takes constant

time. It recurses at most once per call, on an instance size of at most half (of the size

it was called with). Our time recurrence is thus:

T (n) ≤
{

0 if n = 1

1 · T (n

2
) + c otherwise

1

The recursion depth is at most h = log2 n, since the size is divided by 2 until it reaches

1 (so h satisfies n

2h = 1). Therefore the time taken by this algorithm is:

T (n) ≤
log2 n
∑

k=0

1k · c

so

T (n) ≤ c ·
log2 n
∑

k=0

1 = c log2 n + c

Therefore this algorithm runs in time O(logn).

2. You are analysing a divide & conquer algorithm, and have determined that it has the

following characteristics, for input of size n:

• The algorithm processes the data in constant time to determine 4 parts of the

data for the recursion step, where each part has size n

9

• The algorithm recurses 4 times, each time on data of size n

9
(as long as n > 1)

• the algorithm merges the results from the recursion in c · √n time (for some

constant c)

Complete the asymptotic analysis of the running time of this algorithm, by setting

up a recurrence for T (n) and solving it. Use the recursion tree analysis method (in

which you would sum up all levels of the recursion tree). You can make simplifying

assumptions about the values of n, as long as n can still be arbitrarily large.

Assume that n is an integer power of 9. Then we have the followinf recurrence for the

running time T (n):

T (n) =

{

0 if n = 1

4 · T (n

9
) + c · √n otherwise

The recursion tree for this recurrence will have deepest level h = log9 n, since it divides

the size by 9 until it is reduced to 1 (so n

9h = 1).

At level k, where level 0 is the root, there will be 4k nodes, each of size n

9k . Since the

amount of work done for each node is c · √n, then the amount of time needed at level

k is

W (k) = 4k · c ·
(

n

9k

) 1

2

= cn
1

2 ·
(

4

3

)k

2

Summing over all levels, the total time taken for the algorithm is

T (n) =
log9 n
∑

k=0

W (k)

=
log9 n
∑

k=0

cn
1

2 ·
(

4

3

)k

= cn
1

2 ·




log9 n
∑

k=0

(

4

3

)k





= cn
1

2 ·







(

4
3

)log9 n+1 − 1
4
3
− 1







= 3 · 4
3
cn

1

2

(

4

3

)log9 n

− 3 · cn 1

2

= 4 · cn 1

2 · nlog9(4

3
) − 3 · cn 1

2

= 4 · cn 1

2 · nlog9 4− 1

2 − 3 · cn 1

2

= 4 · cnlog9 4 − 3 · cn 1

2

Since log9 4 > 1
2

(we know this since 9(1

2
) = 3 < 4), T (n) ∈ Θ(nlog9 4), which is

approximately Θ(n0.63).

3. (a) Design and write an algorithm that, given a simple undirected graph G = (V, E)

as input, will determine how many edges would need to be added in order to

connect the graph. If the graph is already connected, then your algorithm should

answer 0.

For a solution, we need to realize that the minimum number of edges needed to

link together components is one less than the number of components; essentially,

you would need to build a tree where the components are the nodes.

initialize all vertices as unvisited

count← 0

for all v ∈ V

if v is unvisited

BFS(G, v)

count← count + 1

return count− 1

3

BFS(G, s)

let Q be an empty queue

enqueue s on Q

mark s as visited

while Q is not empty

u← dequeue(Q)

for all v such that (u, v) ∈ E

if v is not visited

enqueue v on Q

mark v as visited

(b) Analyse your algorithm’s running time.

The vertices are initially marked as unvisited in cn time. The for loop in the

first part of the algorithm loops through all vertices. However, it will only call

BFS() if it has found an unvisited vertex, so BFS() will be called exactly once

per component. Over all calls to BFS(), each vertex will be enqueued, marked

as visited, and dequeued exactly once, so the total number of iterations of the

while loop is n. For each vertex u, the number of iterations of the inner for loop

is deg(u), so the total number of iterations of this loop (over the entire execution

of the algorithm) is
∑

u∈V

deg(u) = 2m .

The rest of the algorithm contributes at most a constant factor, so the algorithm

as a whole runs in time Θ(m + n).

4

