
CS3933 Winter 2007 – Group Assignment 3
Due Wednesday February 28, 2007, at 5pm.

Sample Solution

Note that, even though desired running times are not specified, faster algorithms are better

and thus worth more marks.

1. (a) (6 marks) Design and write an algorithm that will, given an undirected graph G,

find the densest component of the graph. The density of a component is defined

as its number of edges divided by its number of vertices.

Analyse the running time of your algorithm.

Algorithm Densest(graph G = (V, E))

Let Q be an empty queue

Let C[] be an array of length |V | (one position per vertex)

mark all vertices as unvisited

mark all edges as unused

c← 0

max← 0

for all s ∈ V

if s is unvisited

c← c + 1

enqueue s on Q

C[s]← c

nodes← 1

edges← 0

while Q is not empty

u← dequeue(Q)

for all v such that (u, v) ∈ E

if v is unvisited

mark v as visited

nodes← nodes + 1

C[v]← c

enqueue v

if (u, v) is unused

mark v as used

edges← edges + 1

if max < (edges/nodes)

1

max← (edges/nodes)

cmax ← c

print “the densest component has density max, and consists of:”

for all u ∈ V

if C[u] = cmax

print u

Time analysis:

Despite the nested loops, each vertex is enqueued, dequeued, and visited exactly

once. All edges are seen twice (once from each endpoint). Additionally, all edges

and vertices are initialised once each, and the final for loop iterates through all

vertices once more. Since the rest of the algorithm takes constant time, and this

analysis is exact, the running time of this algorithm is ∈ Θ(m + n).

(b) (5 marks) Implement your algorithm from part (a) using adjacency lists to repre-

sent the graph. Hand in your source code and 3 test cases that demonstrate your

algorithm well (give both the input and the result). To be kind to the marker,

please also draw your input graphs.

Note to marker: please judge the implementation yourself; using adjacency lists

is important (since other data structures will produce a larger time complexity).

The test cases need to exercise both disconnected and connected graphs, and both

sparse and dense components.

2. (6 marks) When we are searching for paths from a source vertex s to a target vertex t, a

bottleneck vertex is a vertex (that is not either the source or the target) through which

all paths from s to t go. Design and write an algorithm that will, given an undirected

graph G, source vertex s and target vertex t, find a bottleneck vertex between s and t

(if there is one).

Analyse the running time of your algorithm.

There are many potential approaches for this problem. Instead of providing a fully

detailed solution to one approach (which might not help much in assessing others), here

are the sketches of several different approaches. Of course, to be worth full marks, your

solution would need to fill in the details and be structured properly.

(a) (removal approach – worth a little less)

Find a path from s to t using BFS (so that it will be shorter)

For each vertex in the path

remove the vertex

find if t is reachable from s (using BFS or DFS)

2

This approach would take Θ(mn + n2) time in the worst case.

(b) (vertex merge approach)

Find a path from s to t using BFS (so that it will be shorter)

Search the graph using DFS, and find cycles on this path

For each cycle on this path, merge its path vertices

If there are any path vertices left (aside from a merged s and t), then they are

bottlenecks

(c) (cycle-graph aproach)

Each backedge in DFS will correspond to a cycle (composed of tree edges and the

one backedge). Find if there is a cycle between s and t by:

Building a cycle-graph with one node per DFS backedge

Using DFS in the original graph to find which cycles share an edge

add an edge between cycle-graph nodes if they share an edge

mark a pair of cycle-graph nodes if they share a vertex but not an edge

Using BFS or DFS in the cycle graph to see if there is a path from s to t

If there is no such path, then there is a bottleneck; it will be either a vertex shared

by a pair of cycles on the s-t path, or a vertex not in any cycles on the s-t path.

This approach could take either Θ(mn + n2) time or Θ(m + n) time, depending

on the efficiency of the cycle testing.

3. You have been trying to shop for gifts, and have decided on a set of n specific items.

You have also decided to buy one gift per day for the next n days (starting tomorrow).

Each gift i has a current price pi, which is the price of that item today. However, all

gifts have prices that change in a linear fashion with slope si, so that on day j, gift i

will cost pi + si · j (where today will be day 0, so gifts are bought on days 1 through

n). Some slopes may be negative, but we must still buy one gift per day for the next

n days. Do not worry about prices becoming negative. We can assume that all pi and

si values are distinct.

We want to find the order of gifts that minimises the total cost of the gifts; so we want

to find a permutation of 1, 2, . . . , n, given by o1, o2, . . . , on (where gift i is bought on

day oi) that minimises
n∑

i=1

(pi + si · oi)

(a) (5 marks) One potential greedy approach would be to buy the currently most

expensive gift first, and continue in descending order of pi. Give a counterexample

3

and demonstrate why this approach will not always work.

Counterexample:

2 gifts, where p1 = 10, s1 = −4, p2 = 1, and s2 = 50.

The greedy algorithm would buy gift 1 on day 1 at a cost of 10− 4 = 6, and gift

2 on day 2 at a cost of 1 + 50 · 2 = 101, for a total cost of 107.

However, if the gifts are bought in the other order, gift 1 will be bought on day

2 at a cost of 10 − 4 · 2 = 2, and gift 2 will be bought on day 1 at a cost of

1 + 50 = 51, for a total cost of 53, which is less than 107.

Therefore this greedy algorithm does not always produce the optimal order.

(b) (5 marks) Design and write a greedy algorithm that will always find the optimum

order. Analyse the running time of your algorithm.

Algorithm Cheap(n, {pi}, {si})

sort the gifts by decreasing (nonincreasing) slope si

cost← 0

for i from 1 to n (in sorted order)

buy gift i on day i

cost← cost + (pi + si · i)

report minimum total cost cost

Time Analysis:

The sort takes Θ(n log n) time (using mergesort). The for loop has exactly n

iterations. Since the rest of the algorithm takes constant time, this algorithm as

a whole takes time ∈ Θ(n log n).

(c) (5 marks) Prove that your algorithm from part (b) is correct.

Proof: assume not, i.e. that there is some input for which the greedy algorithm

produces an order g1, g2, . . . , gn that is not optimal.

Let the order o1, o2, . . . , on represent the order that produces the minimum cost

while maximising k such that ∀1 ≤ i < k, oi = gi, and ok 6= gk (so that this order,

of all the optimal orders, agrees with the greedy order for the longest).

Since ok 6= gk, and all previous gift choices are identical, the greedy property that

selects gk for nonincreasing slope thus ensures that sok
≤ sgk

. The gift gk will

occur later in the optimal order (so gk = oj for some j > k). Let O represent

the optimal cost. If we modify the optimal order by swapping gift ok with gift

oj = gk, we will have an order with total cost

O + k · (soj
− sok

) + j · (sok
− soj

)

4

= O + (k − j) · (soj
− sok

) = O + (k − j) · (sgk
− sok

)

≤ O since (k − j) < 0 and (sgk
− sok

) > 0

So, we have either improved or maintained the minimum cost, while constructing

an optimal order that agrees with the greedy order longer, contradicting that k

was chosen to be maximum.

Therefore the assumption is wrong, and the greedy algorithm does always find

the minimum total cost.

5

