CS3933 Winter 2007 — Solo Assignment 2
Due Wednesday February 14, 2007, at 5pm.
Sample Solution

1. (7 marks) Design and write a ©(nlogn) divide and conquer algorithm that will, given
a sequence of n numbers, find the number of significant inversions in the sequence.

Algorithm Sig_Invs(list L, number n):
returns (.S, count) where S is the sorted list and count is the number of significant inversions
ifn=1
S— L
count =0
else
divide L into two halves:
A containing the first [§] elements
B containing the remaining | %] elements
(Sa,ca) < Sig_-Invs(A, [5])
(Sp,cp) < Sig-Invs(B, |5])
c+—0
S «— empty list
Csig < [5]
heady < front of S4
headg < front of Sg
sig < front of Sy
while there are still elements remaining in S, or in Spg
while ¢,y # 0 and sig < 2 - headp
advance sitg to next element
Csig < Csig — 1
if headg < head 4
append headpg to S
advance headpg
C <« C+ Cgyg
else (heady is larger)
append heady to S
advance head 4

return (S, ca + cp + ¢)

Despite the nested while loops, this is still a linear time combine step, since we cannot
advance stg more than the length of S, over all iterations.

Note to marker: since an algorithm for counting the number of inversions (not neces-
sarily significant ones) was presented in class and is in the text, a significant amount
of similarity in solutions is expected.

. (7 marks) You are analysing a divide & conquer algorithm, and have determined that
it has the following characteristics:

e The algorithm processes the data in constant time to determine 5 parts of the

data for the recursion step, where each part has size 7

e The algorithm recurses 5 times, each time on data of size § (as long as n > 1)

e the algorithm merges the results from the recursion in ¢ - y/n time (for some
constant c)

Complete the asymptotic analysis of this algorithm, by setting up a recurrence for
T'(n) and solving it. Use the recursion tree analysis method (in which you would sum
up all levels of the recursion tree).

T(n) 0 ifn=1
n)=
5-T(%) +c-/n otherwise

The recursion tree for this recurrence will have deepest level log, n, since it divides the
size by 4 until it is reduced to 1. At level k, where level 0 is the root, there will be 5°
nodes, each of size jr. Since the amount of work done for each node is ¢- y/n, then the
amount of time needed at level k is

W(k) = 5k.c.(%>% _ Cn%.(g)k

Summing over all levels, the total time taken for the algorithm is

logy n

T(n) = > W(k)

log, n+1
5 4 _

5
51

5 1 (5>log4n 2 1
s =Cn? | < — —=Cnh?
2 2 3

Since log, 5 > %, T'(n) € ©(n'*81?), which is approximately ©(n''°).

. (5 marks) Solve the following recurrence relation by analysing the recursion tree. Note
that you will need to calculate upper and lower bounds, since the division is asymmetric
and produces a non-complete recursion tree.

0 ifn=1
(31) +T(5) +c-n otherwise
Since the relation for T'(n) recurses on two parts of sizes that sum to n, each complete
level contains n data items. Furthermore, since the nonrecursive part of the running

2n — . p, the time required for each complete level is ¢ - n;

3
the time required for incomplete levels will be less than ¢ - n.

time is linear, and ¢- 3 +c-

Based on the T(g) part of the recurrence, the first leaf will appear at level logsn,
since g = 1. So, all levels from the root (level 0) to level logs n will be complete.
Since there are log; n + 1 complete levels, each requiring ¢ - n time to compute, 7'(n) >

c-n-(logsn+1),s0 T(n) € Q(nlogn).

Based on the T(%”) part of the recurrence, the last leaf will appear at level log% n,

since
n

loggn —

3 2

()

So, there are logs n + 1 levels in the recursion tree, each requiring at most ¢ - n time

to compute. Thus T(n) <c-n-(logzn+1),s0 T(n) € O(nlogn). Therefore T'(n) €
O(nlogn).

4.

(a) (8 marks) Design and write an algorithm that, given a simple undirected graph
G = (V, F) as input, will determine if it can be turned into a tree by removing
exactly one edge. Output of your algorithm should be either the edge whose
removal will turn the remaining graph into a tree, or “no” if there is no such
edge.

Analyse your algorithm’s running time.

Algorithm MoreThanTree(graph G = (V, E))

flag =0
if |E] = |V
flag =1

mark all vertices as unvisited
mark all edges as unused
let s be any vertex
e = DFS_Edge(G,s)
forallu e V
if u is unvisited
flag =0
if flag =1
output e
else
output “no”

DFS_Edge(graph G = (V, E), vertex s)
e = null
for all u such that (s,u) € £
if u is unvisited
mark u as visited

mark (s, u) as used
¢ = DFS_Edge(G,u)

if e = null
e=¢
else
if (s,u) is unused
e=(s,u)
return e

Analysis:

The depth-first search performed by DFS_FEdge will, in the worst case, visit all
vertices once and consider all edges twice (once per endpoint). However, the DFS
is not performed unless m = n. There are additionally three non-nested loops
that iterate n times each (one to mark vertices, one to mark the m = n edges,
and one explicit loop to check for connectivity). Thus the algorithm runs in O(n)
time.

(8 marks) Design and write an algorithm that, given a simple undirected graph
G = (V,E) as input, will determine if it can be turned into a tree by adding
exactly one edge. Output of your algorithm should be either the edge whose
addition will turn the remaining graph into a tree, or “no” if there is no such
edge.

Analyse your algorithm’s running time.

Algorithm AlmostTree(graph G = (V, E))
mark all vertices w € V' as unvisited
flag =0
if |[E|=1|V]|-2

Let u be any vertex
DFS(G,u)
forallw e V
if w is unvisited
V—w
flag — 1
if flag=1
DFS(G,v)
forall w e V
if w is unvisited
flag — 0
if flag=20
output “no”
else
output (u,v)

DFS(graph G = (V, E), vertex s)
for all u such that (s,u) € F
if u is unvisited
mark u as visited

DFS(G,u)

Analysis:

In the worst case, the algorithm will visit all vertices and consider all edges twice.
However, the traversals only occur if m = n — 2. DFS is called at most twice,
and there are three non-nested loops that either mark or check all vertices, which
add at most a constant factor to the algorithm. Thus the algorithm runs in time
€ O(m+n) =0(n).

