Difference between revisions of "PICA"
Line 1: | Line 1: | ||
Phenotype Investigation with Classification Algorithms (PICA) is a Python framework for testing genotype-phenotype association algorithms. | Phenotype Investigation with Classification Algorithms (PICA) is a Python framework for testing genotype-phenotype association algorithms. | ||
+ | |||
+ | |||
+ | == Command-line == | ||
+ | Use the option -h for help with any command. | ||
+ | |||
+ | * train: Train a given data mining algorithm and output model to file. | ||
+ | Example usage: | ||
+ | train.py --algorithm cpar.CPARTrainer --samples examples/genotype_prokaryote.profile --classes examples/phenotype.profile --targetclass THERM --output output.rules | ||
+ | |||
+ | * test | ||
+ | Test a model with a classification algorithm and given model. | ||
+ | Example usage: | ||
+ | test.py --algorithm cpar.CPARClassifier --samples examples/genotype_prokaryote.profile --classes examples/phenotype.profile --targetclass THERM --model_filename output.rules --model_accuracy mi | ||
+ | |||
+ | * crossvalidate | ||
+ | Train and test various replicates with the given training and testing algorithms. | ||
+ | Example usage: | ||
+ | crossvalidate.py --training_algorithm cpar.CPARTrainer --classification_algorithm cpar.CPARClassifier --accuracy_measure mi --replicates 10 --folds 5 --samples examples/genotype_prokaryote.profile --classes examples/phenotype.profile --targetclass THERM --output_filename resutls.txt --metadata examples/taxonomic_confounders_propagated.txt | ||
+ | |||
+ | |||
+ | |||
+ | == Python API == |
Revision as of 20:01, 12 April 2010
Phenotype Investigation with Classification Algorithms (PICA) is a Python framework for testing genotype-phenotype association algorithms.
Command-line
Use the option -h for help with any command.
- train: Train a given data mining algorithm and output model to file.
Example usage: train.py --algorithm cpar.CPARTrainer --samples examples/genotype_prokaryote.profile --classes examples/phenotype.profile --targetclass THERM --output output.rules
- test
Test a model with a classification algorithm and given model. Example usage: test.py --algorithm cpar.CPARClassifier --samples examples/genotype_prokaryote.profile --classes examples/phenotype.profile --targetclass THERM --model_filename output.rules --model_accuracy mi
- crossvalidate
Train and test various replicates with the given training and testing algorithms. Example usage: crossvalidate.py --training_algorithm cpar.CPARTrainer --classification_algorithm cpar.CPARClassifier --accuracy_measure mi --replicates 10 --folds 5 --samples examples/genotype_prokaryote.profile --classes examples/phenotype.profile --targetclass THERM --output_filename resutls.txt --metadata examples/taxonomic_confounders_propagated.txt